{"title":"无冗余正交阵列的构造","authors":"Guangzhou Chen, Xiaotong Zhang","doi":"10.3934/amc.2021051","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>An <inline-formula><tex-math id=\"M1\">\\begin{document}$ N \\times k $\\end{document}</tex-math></inline-formula> array <inline-formula><tex-math id=\"M2\">\\begin{document}$ A $\\end{document}</tex-math></inline-formula> with entries from <inline-formula><tex-math id=\"M3\">\\begin{document}$ v $\\end{document}</tex-math></inline-formula>-set <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mathcal{V} $\\end{document}</tex-math></inline-formula> is said to be an <i>orthogonal array</i> with <inline-formula><tex-math id=\"M5\">\\begin{document}$ v $\\end{document}</tex-math></inline-formula> levels, strength <inline-formula><tex-math id=\"M6\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula> and index <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\lambda $\\end{document}</tex-math></inline-formula>, denoted by OA<inline-formula><tex-math id=\"M8\">\\begin{document}$ (N,k,v,t) $\\end{document}</tex-math></inline-formula>, if every <inline-formula><tex-math id=\"M9\">\\begin{document}$ N\\times t $\\end{document}</tex-math></inline-formula> sub-array of <inline-formula><tex-math id=\"M10\">\\begin{document}$ A $\\end{document}</tex-math></inline-formula> contains each <inline-formula><tex-math id=\"M11\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula>-tuple based on <inline-formula><tex-math id=\"M12\">\\begin{document}$ \\mathcal{V} $\\end{document}</tex-math></inline-formula> exactly <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\lambda $\\end{document}</tex-math></inline-formula> times as a row. An OA<inline-formula><tex-math id=\"M14\">\\begin{document}$ (N,k,v,t) $\\end{document}</tex-math></inline-formula> is called <i>irredundant</i>, denoted by IrOA<inline-formula><tex-math id=\"M15\">\\begin{document}$ (N,k,v,t) $\\end{document}</tex-math></inline-formula>, if in any <inline-formula><tex-math id=\"M16\">\\begin{document}$ N\\times (k-t ) $\\end{document}</tex-math></inline-formula> sub-array, all of its rows are different. Goyeneche and <inline-formula><tex-math id=\"M17\">\\begin{document}$ \\dot{Z} $\\end{document}</tex-math></inline-formula>yczkowski firstly introduced the definition of an IrOA and showed that an IrOA<inline-formula><tex-math id=\"M18\">\\begin{document}$ (N,k,v,t) $\\end{document}</tex-math></inline-formula> corresponds to a <inline-formula><tex-math id=\"M19\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula>-uniform state of <inline-formula><tex-math id=\"M20\">\\begin{document}$ k $\\end{document}</tex-math></inline-formula> subsystems with local dimension <inline-formula><tex-math id=\"M21\">\\begin{document}$ v $\\end{document}</tex-math></inline-formula> (Physical Review A. 90 (2014), 022316). In this paper, we present some new constructions of irredundant orthogonal arrays by using difference matrices and some special matrices over finite fields, respectively, as a consequence, many infinite families of irredundant orthogonal arrays are obtained. Furthermore, several infinite classes of <inline-formula><tex-math id=\"M22\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula>-uniform states arise from these irredundant orthogonal arrays.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constructions of irredundant orthogonal arrays\",\"authors\":\"Guangzhou Chen, Xiaotong Zhang\",\"doi\":\"10.3934/amc.2021051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>An <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ N \\\\times k $\\\\end{document}</tex-math></inline-formula> array <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ A $\\\\end{document}</tex-math></inline-formula> with entries from <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ v $\\\\end{document}</tex-math></inline-formula>-set <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\mathcal{V} $\\\\end{document}</tex-math></inline-formula> is said to be an <i>orthogonal array</i> with <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ v $\\\\end{document}</tex-math></inline-formula> levels, strength <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula> and index <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\lambda $\\\\end{document}</tex-math></inline-formula>, denoted by OA<inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ (N,k,v,t) $\\\\end{document}</tex-math></inline-formula>, if every <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ N\\\\times t $\\\\end{document}</tex-math></inline-formula> sub-array of <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ A $\\\\end{document}</tex-math></inline-formula> contains each <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula>-tuple based on <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ \\\\mathcal{V} $\\\\end{document}</tex-math></inline-formula> exactly <inline-formula><tex-math id=\\\"M13\\\">\\\\begin{document}$ \\\\lambda $\\\\end{document}</tex-math></inline-formula> times as a row. An OA<inline-formula><tex-math id=\\\"M14\\\">\\\\begin{document}$ (N,k,v,t) $\\\\end{document}</tex-math></inline-formula> is called <i>irredundant</i>, denoted by IrOA<inline-formula><tex-math id=\\\"M15\\\">\\\\begin{document}$ (N,k,v,t) $\\\\end{document}</tex-math></inline-formula>, if in any <inline-formula><tex-math id=\\\"M16\\\">\\\\begin{document}$ N\\\\times (k-t ) $\\\\end{document}</tex-math></inline-formula> sub-array, all of its rows are different. Goyeneche and <inline-formula><tex-math id=\\\"M17\\\">\\\\begin{document}$ \\\\dot{Z} $\\\\end{document}</tex-math></inline-formula>yczkowski firstly introduced the definition of an IrOA and showed that an IrOA<inline-formula><tex-math id=\\\"M18\\\">\\\\begin{document}$ (N,k,v,t) $\\\\end{document}</tex-math></inline-formula> corresponds to a <inline-formula><tex-math id=\\\"M19\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula>-uniform state of <inline-formula><tex-math id=\\\"M20\\\">\\\\begin{document}$ k $\\\\end{document}</tex-math></inline-formula> subsystems with local dimension <inline-formula><tex-math id=\\\"M21\\\">\\\\begin{document}$ v $\\\\end{document}</tex-math></inline-formula> (Physical Review A. 90 (2014), 022316). In this paper, we present some new constructions of irredundant orthogonal arrays by using difference matrices and some special matrices over finite fields, respectively, as a consequence, many infinite families of irredundant orthogonal arrays are obtained. Furthermore, several infinite classes of <inline-formula><tex-math id=\\\"M22\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula>-uniform states arise from these irredundant orthogonal arrays.</p>\",\"PeriodicalId\":50859,\"journal\":{\"name\":\"Advances in Mathematics of Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics of Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3934/amc.2021051\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2021051","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
摘要
An \begin{document}$ N \times k $\end{document} array \begin{document}$ A $\end{document} with entries from \begin{document}$ v $\end{document}-set \begin{document}$ \mathcal{V} $\end{document} is said to be an orthogonal array with \begin{document}$ v $\end{document} levels, strength \begin{document}$ t $\end{document} and index \begin{document}$ \lambda $\end{document}, denoted by OA\begin{document}$ (N,k,v,t) $\end{document}, if every \begin{document}$ N\times t $\end{document} sub-array of \begin{document}$ A $\end{document} contains each \begin{document}$ t $\end{document}-tuple based on \begin{document}$ \mathcal{V} $\end{document} exactly \begin{document}$ \lambda $\end{document} times as a row. An OA\begin{document}$ (N,k,v,t) $\end{document} is called irredundant, denoted by IrOA\begin{document}$ (N,k,v,t) $\end{document}, if in any \begin{document}$ N\times (k-t ) $\end{document} sub-array, all of its rows are different. Goyeneche and \begin{document}$ \dot{Z} $\end{document}yczkowski firstly introduced the definition of an IrOA and showed that an IrOA\begin{document}$ (N,k,v,t) $\end{document} corresponds to a \begin{document}$ t $\end{document}-uniform state of \begin{document}$ k $\end{document} subsystems with local dimension \begin{document}$ v $\end{document} (Physical Review A. 90 (2014), 022316). In this paper, we present some new constructions of irredundant orthogonal arrays by using difference matrices and some special matrices over finite fields, respectively, as a consequence, many infinite families of irredundant orthogonal arrays are obtained. Furthermore, several infinite classes of \begin{document}$ t $\end{document}-uniform states arise from these irredundant orthogonal arrays.
An \begin{document}$ N \times k $\end{document} array \begin{document}$ A $\end{document} with entries from \begin{document}$ v $\end{document}-set \begin{document}$ \mathcal{V} $\end{document} is said to be an orthogonal array with \begin{document}$ v $\end{document} levels, strength \begin{document}$ t $\end{document} and index \begin{document}$ \lambda $\end{document}, denoted by OA\begin{document}$ (N,k,v,t) $\end{document}, if every \begin{document}$ N\times t $\end{document} sub-array of \begin{document}$ A $\end{document} contains each \begin{document}$ t $\end{document}-tuple based on \begin{document}$ \mathcal{V} $\end{document} exactly \begin{document}$ \lambda $\end{document} times as a row. An OA\begin{document}$ (N,k,v,t) $\end{document} is called irredundant, denoted by IrOA\begin{document}$ (N,k,v,t) $\end{document}, if in any \begin{document}$ N\times (k-t ) $\end{document} sub-array, all of its rows are different. Goyeneche and \begin{document}$ \dot{Z} $\end{document}yczkowski firstly introduced the definition of an IrOA and showed that an IrOA\begin{document}$ (N,k,v,t) $\end{document} corresponds to a \begin{document}$ t $\end{document}-uniform state of \begin{document}$ k $\end{document} subsystems with local dimension \begin{document}$ v $\end{document} (Physical Review A. 90 (2014), 022316). In this paper, we present some new constructions of irredundant orthogonal arrays by using difference matrices and some special matrices over finite fields, respectively, as a consequence, many infinite families of irredundant orthogonal arrays are obtained. Furthermore, several infinite classes of \begin{document}$ t $\end{document}-uniform states arise from these irredundant orthogonal arrays.
期刊介绍:
Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.
Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.
More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.