Junjie Shu, Wang Yang, Bei Guo, Qin Weihua, Liu Lanxuan, Liu Xiusheng
{"title":"固化剂对低温固化导电涂料电性能的影响及热力学分析","authors":"Junjie Shu, Wang Yang, Bei Guo, Qin Weihua, Liu Lanxuan, Liu Xiusheng","doi":"10.3390/COATINGS11060656","DOIUrl":null,"url":null,"abstract":"Silver-based high-conductivity coatings are used in many advanced manufacturing equipment and components, and existing coatings require high-temperature curing. This paper studies the effects of different curing agents on the electrical properties of low-temperature curing (<100 °C) conductive coatings, and analyzes the effects of different curing temperatures and curing time on the surface resistance, square resistance and resistivity of conductive coatings. The response surface method in Design Expert was used to construct the model, and the curing thermodynamics of different curing agents were analyzed by DSC. It was found that curing agents with lower Tm and activation energy, higher pre-exponential factor and more flexible segments are beneficial to the preparation of highly conductive coatings.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Curing Agents on Electrical Properties of Low-Temperature Curing Conductive Coatings and Thermodynamic Analysis\",\"authors\":\"Junjie Shu, Wang Yang, Bei Guo, Qin Weihua, Liu Lanxuan, Liu Xiusheng\",\"doi\":\"10.3390/COATINGS11060656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silver-based high-conductivity coatings are used in many advanced manufacturing equipment and components, and existing coatings require high-temperature curing. This paper studies the effects of different curing agents on the electrical properties of low-temperature curing (<100 °C) conductive coatings, and analyzes the effects of different curing temperatures and curing time on the surface resistance, square resistance and resistivity of conductive coatings. The response surface method in Design Expert was used to construct the model, and the curing thermodynamics of different curing agents were analyzed by DSC. It was found that curing agents with lower Tm and activation energy, higher pre-exponential factor and more flexible segments are beneficial to the preparation of highly conductive coatings.\",\"PeriodicalId\":22482,\"journal\":{\"name\":\"THE Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE Coatings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/COATINGS11060656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11060656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Curing Agents on Electrical Properties of Low-Temperature Curing Conductive Coatings and Thermodynamic Analysis
Silver-based high-conductivity coatings are used in many advanced manufacturing equipment and components, and existing coatings require high-temperature curing. This paper studies the effects of different curing agents on the electrical properties of low-temperature curing (<100 °C) conductive coatings, and analyzes the effects of different curing temperatures and curing time on the surface resistance, square resistance and resistivity of conductive coatings. The response surface method in Design Expert was used to construct the model, and the curing thermodynamics of different curing agents were analyzed by DSC. It was found that curing agents with lower Tm and activation energy, higher pre-exponential factor and more flexible segments are beneficial to the preparation of highly conductive coatings.