{"title":"二阶Dirichlet边界控制问题的混合有限元法","authors":"Divay Garg, K. Porwal","doi":"10.48550/arXiv.2207.10139","DOIUrl":null,"url":null,"abstract":"The main aim of this article is to analyze mixed finite element method for the second order Dirichlet boundary control problem. Therein, we develop both a priori and a posteriori error analysis using the energy space based approach. We obtain optimal order a priori error estimates in the energy norm and $L^2$-norm with the help of auxiliary problems. The reliability and the efficiency of proposed a posteriori error estimator is discussed using the Helmholtz decomposition. Numerical experiments are presented to confirm the theoretical findings.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed finite element method for a second order Dirichlet boundary control problem\",\"authors\":\"Divay Garg, K. Porwal\",\"doi\":\"10.48550/arXiv.2207.10139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this article is to analyze mixed finite element method for the second order Dirichlet boundary control problem. Therein, we develop both a priori and a posteriori error analysis using the energy space based approach. We obtain optimal order a priori error estimates in the energy norm and $L^2$-norm with the help of auxiliary problems. The reliability and the efficiency of proposed a posteriori error estimator is discussed using the Helmholtz decomposition. Numerical experiments are presented to confirm the theoretical findings.\",\"PeriodicalId\":10572,\"journal\":{\"name\":\"Comput. Math. Appl.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.10139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.10139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mixed finite element method for a second order Dirichlet boundary control problem
The main aim of this article is to analyze mixed finite element method for the second order Dirichlet boundary control problem. Therein, we develop both a priori and a posteriori error analysis using the energy space based approach. We obtain optimal order a priori error estimates in the energy norm and $L^2$-norm with the help of auxiliary problems. The reliability and the efficiency of proposed a posteriori error estimator is discussed using the Helmholtz decomposition. Numerical experiments are presented to confirm the theoretical findings.