二阶Dirichlet边界控制问题的混合有限元法

Divay Garg, K. Porwal
{"title":"二阶Dirichlet边界控制问题的混合有限元法","authors":"Divay Garg, K. Porwal","doi":"10.48550/arXiv.2207.10139","DOIUrl":null,"url":null,"abstract":"The main aim of this article is to analyze mixed finite element method for the second order Dirichlet boundary control problem. Therein, we develop both a priori and a posteriori error analysis using the energy space based approach. We obtain optimal order a priori error estimates in the energy norm and $L^2$-norm with the help of auxiliary problems. The reliability and the efficiency of proposed a posteriori error estimator is discussed using the Helmholtz decomposition. Numerical experiments are presented to confirm the theoretical findings.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed finite element method for a second order Dirichlet boundary control problem\",\"authors\":\"Divay Garg, K. Porwal\",\"doi\":\"10.48550/arXiv.2207.10139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this article is to analyze mixed finite element method for the second order Dirichlet boundary control problem. Therein, we develop both a priori and a posteriori error analysis using the energy space based approach. We obtain optimal order a priori error estimates in the energy norm and $L^2$-norm with the help of auxiliary problems. The reliability and the efficiency of proposed a posteriori error estimator is discussed using the Helmholtz decomposition. Numerical experiments are presented to confirm the theoretical findings.\",\"PeriodicalId\":10572,\"journal\":{\"name\":\"Comput. Math. Appl.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.10139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.10139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是分析二阶Dirichlet边界控制问题的混合有限元方法。其中,我们使用基于能量空间的方法开发了先验和后验误差分析。在辅助问题的帮助下,得到了能量范数和L^2 -范数的最优先验阶误差估计。利用亥姆霍兹分解讨论了后验误差估计器的可靠性和效率。数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed finite element method for a second order Dirichlet boundary control problem
The main aim of this article is to analyze mixed finite element method for the second order Dirichlet boundary control problem. Therein, we develop both a priori and a posteriori error analysis using the energy space based approach. We obtain optimal order a priori error estimates in the energy norm and $L^2$-norm with the help of auxiliary problems. The reliability and the efficiency of proposed a posteriori error estimator is discussed using the Helmholtz decomposition. Numerical experiments are presented to confirm the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信