基于Otsu和最小交叉熵的彩色图像分割教学策略

R. Kalyani, P. Sathya, V. Sakthivel, J. Ravikumar
{"title":"基于Otsu和最小交叉熵的彩色图像分割教学策略","authors":"R. Kalyani, P. Sathya, V. Sakthivel, J. Ravikumar","doi":"10.1109/ICSCAN49426.2020.9262364","DOIUrl":null,"url":null,"abstract":"The most fundamental step in image processing is image segmentation and it results in revealing enormous information embedded in most widely used RGB color space image. Excellent result is obtained for bi-level thresholding and the exhaustive search for optimal threshold values, to analyze complex images in multilevel thresholding (MLT), is reduced by promising objective functions such as Otsu and minimum cross entropy MCE aided with teaching-learning based optimization metaheuristic algorithm (TLBO). In TLBO, a teacher shares cognizance to a student. The use of only common control parameters and less-specific control parameters in TLBO achieves exploration and exploitation. The efficiency of TLBO is compared with cuckoo search algorithm (CS) at 4,5,6 and 7 threshold levels. Experimental results reveal that optimal output of TLBO is more successful in precise image segmentation and aids in various real time applications.","PeriodicalId":6744,"journal":{"name":"2020 International Conference on System, Computation, Automation and Networking (ICSCAN)","volume":"27 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Teaching Tactics for Color Image Segmentation Using Otsu and Minimum Cross Entropy\",\"authors\":\"R. Kalyani, P. Sathya, V. Sakthivel, J. Ravikumar\",\"doi\":\"10.1109/ICSCAN49426.2020.9262364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most fundamental step in image processing is image segmentation and it results in revealing enormous information embedded in most widely used RGB color space image. Excellent result is obtained for bi-level thresholding and the exhaustive search for optimal threshold values, to analyze complex images in multilevel thresholding (MLT), is reduced by promising objective functions such as Otsu and minimum cross entropy MCE aided with teaching-learning based optimization metaheuristic algorithm (TLBO). In TLBO, a teacher shares cognizance to a student. The use of only common control parameters and less-specific control parameters in TLBO achieves exploration and exploitation. The efficiency of TLBO is compared with cuckoo search algorithm (CS) at 4,5,6 and 7 threshold levels. Experimental results reveal that optimal output of TLBO is more successful in precise image segmentation and aids in various real time applications.\",\"PeriodicalId\":6744,\"journal\":{\"name\":\"2020 International Conference on System, Computation, Automation and Networking (ICSCAN)\",\"volume\":\"27 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on System, Computation, Automation and Networking (ICSCAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCAN49426.2020.9262364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on System, Computation, Automation and Networking (ICSCAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCAN49426.2020.9262364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图像分割是图像处理中最基本的步骤,其结果是在最广泛使用的RGB色彩空间图像中揭示了大量的信息。采用基于教学的优化元启发式算法(TLBO),结合Otsu和最小交叉熵MCE等有前途的目标函数,减少了多级阈值分析中最优阈值的穷举搜索。在TLBO中,老师与学生分享认知。在TLBO中只使用通用控制参数和不太特定的控制参数来实现勘探和开发。在4、5、6和7个阈值水平上,比较了TLBO算法与布谷鸟搜索算法(CS)的效率。实验结果表明,TLBO的最优输出在精确的图像分割中更加成功,并有助于各种实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Teaching Tactics for Color Image Segmentation Using Otsu and Minimum Cross Entropy
The most fundamental step in image processing is image segmentation and it results in revealing enormous information embedded in most widely used RGB color space image. Excellent result is obtained for bi-level thresholding and the exhaustive search for optimal threshold values, to analyze complex images in multilevel thresholding (MLT), is reduced by promising objective functions such as Otsu and minimum cross entropy MCE aided with teaching-learning based optimization metaheuristic algorithm (TLBO). In TLBO, a teacher shares cognizance to a student. The use of only common control parameters and less-specific control parameters in TLBO achieves exploration and exploitation. The efficiency of TLBO is compared with cuckoo search algorithm (CS) at 4,5,6 and 7 threshold levels. Experimental results reveal that optimal output of TLBO is more successful in precise image segmentation and aids in various real time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信