离散最大线性贝叶斯网络

Benjamin Hollering, S. Sullivant
{"title":"离散最大线性贝叶斯网络","authors":"Benjamin Hollering, S. Sullivant","doi":"10.2140/astat.2021.12.213","DOIUrl":null,"url":null,"abstract":"Discrete max-linear Bayesian networks are directed graphical models specified by the same recursive structural equations as max-linear models but with discrete innovations. When all of the random variables in the model are binary, these models are isomorphic to the conjunctive Bayesian network (CBN) models of Beerenwinkel, Eriksson, and Sturmfels. Many of the techniques used to study CBN models can be extended to discrete max-linear models and similar results can be obtained. In particular, we extend the fact that CBN models are toric varieties after linear change of coordinates to all discrete max-linear models.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete max-linear Bayesian networks\",\"authors\":\"Benjamin Hollering, S. Sullivant\",\"doi\":\"10.2140/astat.2021.12.213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete max-linear Bayesian networks are directed graphical models specified by the same recursive structural equations as max-linear models but with discrete innovations. When all of the random variables in the model are binary, these models are isomorphic to the conjunctive Bayesian network (CBN) models of Beerenwinkel, Eriksson, and Sturmfels. Many of the techniques used to study CBN models can be extended to discrete max-linear models and similar results can be obtained. In particular, we extend the fact that CBN models are toric varieties after linear change of coordinates to all discrete max-linear models.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/astat.2021.12.213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/astat.2021.12.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

离散最大线性贝叶斯网络是由与最大线性模型相同的递归结构方程指定的有向图形模型,但具有离散创新。当模型中的所有随机变量均为二值时,这些模型与Beerenwinkel、Eriksson和Sturmfels的联合贝叶斯网络(CBN)模型同构。许多用于研究CBN模型的技术可以扩展到离散的最大线性模型,并且可以得到类似的结果。特别地,我们将CBN模型在坐标线性变化后是环面变化的事实推广到所有离散的最大线性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete max-linear Bayesian networks
Discrete max-linear Bayesian networks are directed graphical models specified by the same recursive structural equations as max-linear models but with discrete innovations. When all of the random variables in the model are binary, these models are isomorphic to the conjunctive Bayesian network (CBN) models of Beerenwinkel, Eriksson, and Sturmfels. Many of the techniques used to study CBN models can be extended to discrete max-linear models and similar results can be obtained. In particular, we extend the fact that CBN models are toric varieties after linear change of coordinates to all discrete max-linear models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信