{"title":"离散最大线性贝叶斯网络","authors":"Benjamin Hollering, S. Sullivant","doi":"10.2140/astat.2021.12.213","DOIUrl":null,"url":null,"abstract":"Discrete max-linear Bayesian networks are directed graphical models specified by the same recursive structural equations as max-linear models but with discrete innovations. When all of the random variables in the model are binary, these models are isomorphic to the conjunctive Bayesian network (CBN) models of Beerenwinkel, Eriksson, and Sturmfels. Many of the techniques used to study CBN models can be extended to discrete max-linear models and similar results can be obtained. In particular, we extend the fact that CBN models are toric varieties after linear change of coordinates to all discrete max-linear models.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete max-linear Bayesian networks\",\"authors\":\"Benjamin Hollering, S. Sullivant\",\"doi\":\"10.2140/astat.2021.12.213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete max-linear Bayesian networks are directed graphical models specified by the same recursive structural equations as max-linear models but with discrete innovations. When all of the random variables in the model are binary, these models are isomorphic to the conjunctive Bayesian network (CBN) models of Beerenwinkel, Eriksson, and Sturmfels. Many of the techniques used to study CBN models can be extended to discrete max-linear models and similar results can be obtained. In particular, we extend the fact that CBN models are toric varieties after linear change of coordinates to all discrete max-linear models.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/astat.2021.12.213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/astat.2021.12.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete max-linear Bayesian networks are directed graphical models specified by the same recursive structural equations as max-linear models but with discrete innovations. When all of the random variables in the model are binary, these models are isomorphic to the conjunctive Bayesian network (CBN) models of Beerenwinkel, Eriksson, and Sturmfels. Many of the techniques used to study CBN models can be extended to discrete max-linear models and similar results can be obtained. In particular, we extend the fact that CBN models are toric varieties after linear change of coordinates to all discrete max-linear models.