{"title":"相态对相变材料与陶瓷骨架界面热导率影响的研究","authors":"Tong Zhang, Fangyuan Sun, Libing Zheng, Dazheng Wang, Yanhui Feng","doi":"10.1080/09276440.2023.2210878","DOIUrl":null,"url":null,"abstract":"ABSTRACT Composite phase change materials with sugar alcohol as the phase change material and highly thermally conductive ceramics as the porous skeleton are widely used in various thermal storage systems. The interfacial thermal conductance (ITC) between the phase change materials under different phases and the skeleton is an important factor affecting the rate of heat storage (release) in thermal storage systems. The ITC between ceramics(AlN, SiC) and sugar alcohols (mannitol and galactitol) in the solid and liquid states is investigated by means of both time-domain thermoreflectance and molecular dynamics simulations. The results show that the ITC between phase change materials and ceramic is better in liquid state than in solid state, and that the ITC between mannitol and ceramic is better, and that the ITC betweenAlN and sugar alcohol is better. More low-frequency phonons are involved in the thermal transport of the sugar alcohols in the liquid state, with an average overlap energy of about 9.5% higher than that of the solid state and an average phonon participation rate of about 6.8% higher. It was also found that it isthe H atom in the sugar alcohol that is linked to the C atom that governs the ITC. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the effect of phase state on the interfacial thermal conductance between PCMs and ceramic skeletons\",\"authors\":\"Tong Zhang, Fangyuan Sun, Libing Zheng, Dazheng Wang, Yanhui Feng\",\"doi\":\"10.1080/09276440.2023.2210878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Composite phase change materials with sugar alcohol as the phase change material and highly thermally conductive ceramics as the porous skeleton are widely used in various thermal storage systems. The interfacial thermal conductance (ITC) between the phase change materials under different phases and the skeleton is an important factor affecting the rate of heat storage (release) in thermal storage systems. The ITC between ceramics(AlN, SiC) and sugar alcohols (mannitol and galactitol) in the solid and liquid states is investigated by means of both time-domain thermoreflectance and molecular dynamics simulations. The results show that the ITC between phase change materials and ceramic is better in liquid state than in solid state, and that the ITC between mannitol and ceramic is better, and that the ITC betweenAlN and sugar alcohol is better. More low-frequency phonons are involved in the thermal transport of the sugar alcohols in the liquid state, with an average overlap energy of about 9.5% higher than that of the solid state and an average phonon participation rate of about 6.8% higher. It was also found that it isthe H atom in the sugar alcohol that is linked to the C atom that governs the ITC. GRAPHICAL ABSTRACT\",\"PeriodicalId\":10653,\"journal\":{\"name\":\"Composite Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09276440.2023.2210878\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2210878","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Study of the effect of phase state on the interfacial thermal conductance between PCMs and ceramic skeletons
ABSTRACT Composite phase change materials with sugar alcohol as the phase change material and highly thermally conductive ceramics as the porous skeleton are widely used in various thermal storage systems. The interfacial thermal conductance (ITC) between the phase change materials under different phases and the skeleton is an important factor affecting the rate of heat storage (release) in thermal storage systems. The ITC between ceramics(AlN, SiC) and sugar alcohols (mannitol and galactitol) in the solid and liquid states is investigated by means of both time-domain thermoreflectance and molecular dynamics simulations. The results show that the ITC between phase change materials and ceramic is better in liquid state than in solid state, and that the ITC between mannitol and ceramic is better, and that the ITC betweenAlN and sugar alcohol is better. More low-frequency phonons are involved in the thermal transport of the sugar alcohols in the liquid state, with an average overlap energy of about 9.5% higher than that of the solid state and an average phonon participation rate of about 6.8% higher. It was also found that it isthe H atom in the sugar alcohol that is linked to the C atom that governs the ITC. GRAPHICAL ABSTRACT
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields