{"title":"打结的网络形成蜂窝安全网","authors":"Marric Stephens","doi":"10.1103/physics.16.s113","DOIUrl":null,"url":null,"abstract":"T hin bags filled with water aren’t the obvious material for building robust, complex structures. But when it comes to constructing biological tissues, such bags—which biological cells essentially resemble—are what nature has to work with. To provide the necessary mechanical properties, cells’ interiors are reinforced with various biopolymer networks, with each network resisting strain in a different stress regime. NowMarco Pensalfini of the Polytechnic University of Catalonia, Spain, and his colleagues have investigated the dynamics of one of these networks—the so-called intermediate-filament (IF) network—which helps keep the cells in epithelial tissues intact under large deformations [1]. The researchers show that the role of this network as a cellular “safety net” depends on how the filaments tangle together.","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":"102 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knotted Networks Form Cellular Safety Nets\",\"authors\":\"Marric Stephens\",\"doi\":\"10.1103/physics.16.s113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"T hin bags filled with water aren’t the obvious material for building robust, complex structures. But when it comes to constructing biological tissues, such bags—which biological cells essentially resemble—are what nature has to work with. To provide the necessary mechanical properties, cells’ interiors are reinforced with various biopolymer networks, with each network resisting strain in a different stress regime. NowMarco Pensalfini of the Polytechnic University of Catalonia, Spain, and his colleagues have investigated the dynamics of one of these networks—the so-called intermediate-filament (IF) network—which helps keep the cells in epithelial tissues intact under large deformations [1]. The researchers show that the role of this network as a cellular “safety net” depends on how the filaments tangle together.\",\"PeriodicalId\":783,\"journal\":{\"name\":\"Technical Physics\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physics.16.s113\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physics.16.s113","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
T hin bags filled with water aren’t the obvious material for building robust, complex structures. But when it comes to constructing biological tissues, such bags—which biological cells essentially resemble—are what nature has to work with. To provide the necessary mechanical properties, cells’ interiors are reinforced with various biopolymer networks, with each network resisting strain in a different stress regime. NowMarco Pensalfini of the Polytechnic University of Catalonia, Spain, and his colleagues have investigated the dynamics of one of these networks—the so-called intermediate-filament (IF) network—which helps keep the cells in epithelial tissues intact under large deformations [1]. The researchers show that the role of this network as a cellular “safety net” depends on how the filaments tangle together.
期刊介绍:
Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.