Tahmoures Shabanian, Aatreyi Bal, Prabal Basu, Koushik Chakraborty, Sanghamitra Roy
{"title":"ACE-GPU:解决近阈值计算GPU中瓶颈导致的性能瓶颈","authors":"Tahmoures Shabanian, Aatreyi Bal, Prabal Basu, Koushik Chakraborty, Sanghamitra Roy","doi":"10.1145/3218603.3218644","DOIUrl":null,"url":null,"abstract":"The proliferation of multicore devices with a strict thermal budget has aided to the research in Near-Threshold Computing (NTC). However, the operation of a Graphics Processing Unit (GPU) at the NTC region has still remained recondite. In this work, we explore an important reliability predicament of NTC, called choke points, that severely throttles the performance of GPUs. Employing a cross-layer methodology, we demonstrate the potency of choke points in inducing timing errors in a GPU, operating at the NTC region. We propose a holistic circuit-architectural solution, that promotes an energy-efficient NTC-GPU design paradigm by gracefully tackling the choke point induced timing errors. Our proposed scheme offers 3.18x and 88.5% improvements in NTC-GPU performance and energy delay product, respectively, over a state-of-the-art timing error mitigation technique, with marginal area and power overheads.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ACE-GPU: Tackling Choke Point Induced Performance Bottlenecks in a Near-Threshold Computing GPU\",\"authors\":\"Tahmoures Shabanian, Aatreyi Bal, Prabal Basu, Koushik Chakraborty, Sanghamitra Roy\",\"doi\":\"10.1145/3218603.3218644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of multicore devices with a strict thermal budget has aided to the research in Near-Threshold Computing (NTC). However, the operation of a Graphics Processing Unit (GPU) at the NTC region has still remained recondite. In this work, we explore an important reliability predicament of NTC, called choke points, that severely throttles the performance of GPUs. Employing a cross-layer methodology, we demonstrate the potency of choke points in inducing timing errors in a GPU, operating at the NTC region. We propose a holistic circuit-architectural solution, that promotes an energy-efficient NTC-GPU design paradigm by gracefully tackling the choke point induced timing errors. Our proposed scheme offers 3.18x and 88.5% improvements in NTC-GPU performance and energy delay product, respectively, over a state-of-the-art timing error mitigation technique, with marginal area and power overheads.\",\"PeriodicalId\":20456,\"journal\":{\"name\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3218603.3218644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ACE-GPU: Tackling Choke Point Induced Performance Bottlenecks in a Near-Threshold Computing GPU
The proliferation of multicore devices with a strict thermal budget has aided to the research in Near-Threshold Computing (NTC). However, the operation of a Graphics Processing Unit (GPU) at the NTC region has still remained recondite. In this work, we explore an important reliability predicament of NTC, called choke points, that severely throttles the performance of GPUs. Employing a cross-layer methodology, we demonstrate the potency of choke points in inducing timing errors in a GPU, operating at the NTC region. We propose a holistic circuit-architectural solution, that promotes an energy-efficient NTC-GPU design paradigm by gracefully tackling the choke point induced timing errors. Our proposed scheme offers 3.18x and 88.5% improvements in NTC-GPU performance and energy delay product, respectively, over a state-of-the-art timing error mitigation technique, with marginal area and power overheads.