用遗传算法加模糊逻辑优化搅拌槽加热器温度控制过程中的PID控制参数

Nurul Ikhlas Septiani, Ike Bayusari, Caroline, T. Haiyunnisa, B. Suprapto
{"title":"用遗传算法加模糊逻辑优化搅拌槽加热器温度控制过程中的PID控制参数","authors":"Nurul Ikhlas Septiani, Ike Bayusari, Caroline, T. Haiyunnisa, B. Suprapto","doi":"10.1109/ICECOS.2017.8167167","DOIUrl":null,"url":null,"abstract":"This paper describes a method to determine Proportional Integral Derivative (PID) controller parameter using Genetic Algorithm with the Fuzzy Logic controller of temperature control of Stirred Tank Heater. The system design begins with the search for the transfer function on the Stirred Tank Heater. The fuzzy logic system design is used to find the parameters in the Genetic Algorithm is the probability of crossover and the probability of mutation. This parameter is used to find the value of Kp, Ki, and Kd on the PID controller. Based on the experiment, the control system output response reaches error steady state, and overshoot are smaller when the controller is tuned with Genetic Algorithm plus Fuzzy Logic than Ziegler-Nichols method. But in term rise time and settling time, Ziegler-Nichols method is smaller than Genetic Algorithm plus Fuzzy Logic method.","PeriodicalId":6528,"journal":{"name":"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)","volume":"10 1","pages":"61-66"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimization of PID control parameters with genetic algorithm plus fuzzy logic in stirred tank heater temperature control process\",\"authors\":\"Nurul Ikhlas Septiani, Ike Bayusari, Caroline, T. Haiyunnisa, B. Suprapto\",\"doi\":\"10.1109/ICECOS.2017.8167167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a method to determine Proportional Integral Derivative (PID) controller parameter using Genetic Algorithm with the Fuzzy Logic controller of temperature control of Stirred Tank Heater. The system design begins with the search for the transfer function on the Stirred Tank Heater. The fuzzy logic system design is used to find the parameters in the Genetic Algorithm is the probability of crossover and the probability of mutation. This parameter is used to find the value of Kp, Ki, and Kd on the PID controller. Based on the experiment, the control system output response reaches error steady state, and overshoot are smaller when the controller is tuned with Genetic Algorithm plus Fuzzy Logic than Ziegler-Nichols method. But in term rise time and settling time, Ziegler-Nichols method is smaller than Genetic Algorithm plus Fuzzy Logic method.\",\"PeriodicalId\":6528,\"journal\":{\"name\":\"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)\",\"volume\":\"10 1\",\"pages\":\"61-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECOS.2017.8167167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECOS.2017.8167167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了一种利用遗传算法确定比例积分导数(PID)控制器参数的方法,并结合搅拌槽式加热器温度控制的模糊逻辑控制器。系统设计从寻找搅拌槽加热器的传递函数开始。采用模糊逻辑系统设计,确定遗传算法中的参数为交叉概率和突变概率。该参数用于在PID控制器上求Kp、Ki、Kd的值。实验结果表明,采用遗传算法加模糊逻辑对控制器进行调谐时,控制系统输出响应达到误差稳态,且超调量小于Ziegler-Nichols方法。但在上升时间和稳定时间上,齐格勒-尼克尔斯方法比遗传算法加模糊逻辑方法要小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of PID control parameters with genetic algorithm plus fuzzy logic in stirred tank heater temperature control process
This paper describes a method to determine Proportional Integral Derivative (PID) controller parameter using Genetic Algorithm with the Fuzzy Logic controller of temperature control of Stirred Tank Heater. The system design begins with the search for the transfer function on the Stirred Tank Heater. The fuzzy logic system design is used to find the parameters in the Genetic Algorithm is the probability of crossover and the probability of mutation. This parameter is used to find the value of Kp, Ki, and Kd on the PID controller. Based on the experiment, the control system output response reaches error steady state, and overshoot are smaller when the controller is tuned with Genetic Algorithm plus Fuzzy Logic than Ziegler-Nichols method. But in term rise time and settling time, Ziegler-Nichols method is smaller than Genetic Algorithm plus Fuzzy Logic method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信