{"title":"具有小Hurst指数的分数阶Cox-Ingersoll-Ross过程","authors":"Y. Mishura, Anton Yurchenko-Tytarenko","doi":"10.15559/18-VMSTA126","DOIUrl":null,"url":null,"abstract":"In this paper the fractional Cox-Ingersoll-Ross process on $\\mathbb{R}_+$ for $H 0\\}}+\\varepsilon}-a Y_{\\varepsilon}(t))dt+\\sigma dB^H(t)$, as $\\varepsilon\\downarrow0$. Properties of such limit process are considered. SDE for both the limit process and the fractional Cox-Ingersoll-Ross process are obtained.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"251 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Fractional Cox–Ingersoll–Ross process with small Hurst indices\",\"authors\":\"Y. Mishura, Anton Yurchenko-Tytarenko\",\"doi\":\"10.15559/18-VMSTA126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the fractional Cox-Ingersoll-Ross process on $\\\\mathbb{R}_+$ for $H 0\\\\}}+\\\\varepsilon}-a Y_{\\\\varepsilon}(t))dt+\\\\sigma dB^H(t)$, as $\\\\varepsilon\\\\downarrow0$. Properties of such limit process are considered. SDE for both the limit process and the fractional Cox-Ingersoll-Ross process are obtained.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"251 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/18-VMSTA126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/18-VMSTA126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Fractional Cox–Ingersoll–Ross process with small Hurst indices
In this paper the fractional Cox-Ingersoll-Ross process on $\mathbb{R}_+$ for $H 0\}}+\varepsilon}-a Y_{\varepsilon}(t))dt+\sigma dB^H(t)$, as $\varepsilon\downarrow0$. Properties of such limit process are considered. SDE for both the limit process and the fractional Cox-Ingersoll-Ross process are obtained.