单轴拉伸聚乙烯熔体双折射的原子模拟

V.G. Mavrantzas , D.N. Theodorou
{"title":"单轴拉伸聚乙烯熔体双折射的原子模拟","authors":"V.G. Mavrantzas ,&nbsp;D.N. Theodorou","doi":"10.1016/S1089-3156(99)00027-6","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The birefringence of uniaxially stretched, long-chain polyethylene<span> (PE) melts is predicted through detailed atomistic simulations by employing the end-bridging </span></span>Monte Carlo method<span>. The method involves two steps: First, a large number of well-equilibrated, uniaxially stretched polymer configurations are sampled by invoking the methodology developed in our recent work on the simulation of polymer melt elasticity. A key feature in this step is the tensorial field </span></span><em>a<sub>xx</sub></em> which orients and, under certain conditions, deforms the polymer chains in the <em>x</em><span><span> direction, inducing anisotropy in the melt. Second, the structural characteristics of the oriented polymer configurations are analyzed and a description of their anisotropy at the </span>monomer<span><span> level is obtained. By transforming the polarizability tensor of each individual skeletal bond (or united atom group) from the coordinate frame of its principal axes to the laboratory frame, the ensemble average polarizability tensor per </span>methylene group 〈</span></span><strong>α</strong>〉 of the uniaxially stretched polymer melt is calculated as a function of the segment order parameter <em>S<sub>x</sub></em><span>. The anisotropic melt refractive index Δ</span><em>n</em>(≡<em>n</em><sub><em>xx</em></sub>−<em>n</em><sub><em>yy</em></sub>) is obtained from 〈<strong>α</strong>〉 by using the Clausius–Mossoti and Lorentz–Lorenz relationships. Results obtained for two linear PE melts (average chain length C<sub>78</sub> and C<sub>200</sub>) verify the validity of the stress optical law for small enough imposed elongational flow rates <em>a<sub>xx</sub></em>. The calculated stress optical law coefficient <em>C</em> is found to be equal to (3.15±0.20)×10<sup>−9</sup> <!-->Pa<sup>−1</sup> for the C<sub>78</sub> melt and equal to (2.35±0.10)×10<sup>−9</sup> <!-->Pa<sup>−1</sup> for the C<sub>200</sub> melt. The experimentally measured value for high-molecular weight, linear, high-density PE melts is 2.20×10<sup>−9</sup> <!-->Pa<sup>−1</sup>.</p></div>","PeriodicalId":100309,"journal":{"name":"Computational and Theoretical Polymer Science","volume":"10 1","pages":"Pages 1-13"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1089-3156(99)00027-6","citationCount":"24","resultStr":"{\"title\":\"Atomistic simulation of the birefringence of uniaxially stretched polyethylene melts\",\"authors\":\"V.G. Mavrantzas ,&nbsp;D.N. Theodorou\",\"doi\":\"10.1016/S1089-3156(99)00027-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The birefringence of uniaxially stretched, long-chain polyethylene<span> (PE) melts is predicted through detailed atomistic simulations by employing the end-bridging </span></span>Monte Carlo method<span>. The method involves two steps: First, a large number of well-equilibrated, uniaxially stretched polymer configurations are sampled by invoking the methodology developed in our recent work on the simulation of polymer melt elasticity. A key feature in this step is the tensorial field </span></span><em>a<sub>xx</sub></em> which orients and, under certain conditions, deforms the polymer chains in the <em>x</em><span><span> direction, inducing anisotropy in the melt. Second, the structural characteristics of the oriented polymer configurations are analyzed and a description of their anisotropy at the </span>monomer<span><span> level is obtained. By transforming the polarizability tensor of each individual skeletal bond (or united atom group) from the coordinate frame of its principal axes to the laboratory frame, the ensemble average polarizability tensor per </span>methylene group 〈</span></span><strong>α</strong>〉 of the uniaxially stretched polymer melt is calculated as a function of the segment order parameter <em>S<sub>x</sub></em><span>. The anisotropic melt refractive index Δ</span><em>n</em>(≡<em>n</em><sub><em>xx</em></sub>−<em>n</em><sub><em>yy</em></sub>) is obtained from 〈<strong>α</strong>〉 by using the Clausius–Mossoti and Lorentz–Lorenz relationships. Results obtained for two linear PE melts (average chain length C<sub>78</sub> and C<sub>200</sub>) verify the validity of the stress optical law for small enough imposed elongational flow rates <em>a<sub>xx</sub></em>. The calculated stress optical law coefficient <em>C</em> is found to be equal to (3.15±0.20)×10<sup>−9</sup> <!-->Pa<sup>−1</sup> for the C<sub>78</sub> melt and equal to (2.35±0.10)×10<sup>−9</sup> <!-->Pa<sup>−1</sup> for the C<sub>200</sub> melt. The experimentally measured value for high-molecular weight, linear, high-density PE melts is 2.20×10<sup>−9</sup> <!-->Pa<sup>−1</sup>.</p></div>\",\"PeriodicalId\":100309,\"journal\":{\"name\":\"Computational and Theoretical Polymer Science\",\"volume\":\"10 1\",\"pages\":\"Pages 1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1089-3156(99)00027-6\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1089315699000276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089315699000276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

采用端桥式蒙特卡罗方法对单轴拉伸长链聚乙烯(PE)熔体的双折射进行了详细的原子模拟。该方法包括两个步骤:首先,通过调用我们最近在聚合物熔体弹性模拟工作中开发的方法,对大量平衡良好的单轴拉伸聚合物构型进行采样。这一步骤的一个关键特征是张张力场axx,它在x方向上定向并在某些条件下使聚合物链变形,从而引起熔体的各向异性。其次,分析了定向聚合物构型的结构特征,并在单体水平上对其各向异性进行了描述。通过将单个骨架键(或统一原子基团)的极化张量从其主轴坐标系变换到实验室坐标系,计算出单轴拉伸聚合物熔体亚甲基< α >的系综平均极化张量作为段序参数Sx的函数。利用克劳usius - mossoti和Lorentz-Lorenz关系,从< α >得到各向异性熔体折射率Δn(≡nxx−nyy)。对两种线性PE熔体(平均链长C78和C200)的结果验证了应力光学定律在施加足够小的拉伸流率axx下的有效性。计算得到的应力光律系数C对于C78熔体等于(3.15±0.20)×10−9 Pa−1,对于C200熔体等于(2.35±0.10)×10−9 Pa−1。高分子量线性高密度PE熔体的实验测量值为2.20×10−9 Pa−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomistic simulation of the birefringence of uniaxially stretched polyethylene melts

The birefringence of uniaxially stretched, long-chain polyethylene (PE) melts is predicted through detailed atomistic simulations by employing the end-bridging Monte Carlo method. The method involves two steps: First, a large number of well-equilibrated, uniaxially stretched polymer configurations are sampled by invoking the methodology developed in our recent work on the simulation of polymer melt elasticity. A key feature in this step is the tensorial field axx which orients and, under certain conditions, deforms the polymer chains in the x direction, inducing anisotropy in the melt. Second, the structural characteristics of the oriented polymer configurations are analyzed and a description of their anisotropy at the monomer level is obtained. By transforming the polarizability tensor of each individual skeletal bond (or united atom group) from the coordinate frame of its principal axes to the laboratory frame, the ensemble average polarizability tensor per methylene group 〈α〉 of the uniaxially stretched polymer melt is calculated as a function of the segment order parameter Sx. The anisotropic melt refractive index Δn(≡nxxnyy) is obtained from 〈α〉 by using the Clausius–Mossoti and Lorentz–Lorenz relationships. Results obtained for two linear PE melts (average chain length C78 and C200) verify the validity of the stress optical law for small enough imposed elongational flow rates axx. The calculated stress optical law coefficient C is found to be equal to (3.15±0.20)×10−9 Pa−1 for the C78 melt and equal to (2.35±0.10)×10−9 Pa−1 for the C200 melt. The experimentally measured value for high-molecular weight, linear, high-density PE melts is 2.20×10−9 Pa−1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信