反转曲面的取向同胚

Q3 Mathematics
I. Kuznietsova, S. Maksymenko
{"title":"反转曲面的取向同胚","authors":"I. Kuznietsova, S. Maksymenko","doi":"10.15673/TMGC.V13I4.1953","DOIUrl":null,"url":null,"abstract":"\nLet $M$ be a connected compact orientable surface, $f:M\\to \\mathbb{R}$ be a Morse function, and $h:M\\to M$ be a diffeomorphism which preserves $f$ in the sense that $f\\circ h = f$. \nWe will show that if $h$ leaves invariant each regular component of each level set of $f$ and reverses its orientation, then $h^2$ is isotopic to the identity map of $M$ via $f$-preserving isotopy. \nThis statement can be regarded as a foliated and a homotopy analogue of a well known observation that every reversing orientation orthogonal isomorphism of a plane has order $2$, i.e. a mirror symmetry with respect to some line. \nThe obtained results hold in fact for a larger class of maps with isolated singularities from compact orientable surfaces to the real line and the circle. \n \n ","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"171 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reversing orientation homeomorphisms of surfaces\",\"authors\":\"I. Kuznietsova, S. Maksymenko\",\"doi\":\"10.15673/TMGC.V13I4.1953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nLet $M$ be a connected compact orientable surface, $f:M\\\\to \\\\mathbb{R}$ be a Morse function, and $h:M\\\\to M$ be a diffeomorphism which preserves $f$ in the sense that $f\\\\circ h = f$. \\nWe will show that if $h$ leaves invariant each regular component of each level set of $f$ and reverses its orientation, then $h^2$ is isotopic to the identity map of $M$ via $f$-preserving isotopy. \\nThis statement can be regarded as a foliated and a homotopy analogue of a well known observation that every reversing orientation orthogonal isomorphism of a plane has order $2$, i.e. a mirror symmetry with respect to some line. \\nThe obtained results hold in fact for a larger class of maps with isolated singularities from compact orientable surfaces to the real line and the circle. \\n \\n \",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/TMGC.V13I4.1953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/TMGC.V13I4.1953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

设$M$是一个连通紧致可定向曲面,$f:M\到\mathbb{R}$是一个莫尔斯函数,$h:M\到M$是一个在$f\circ h = f$的意义上保持$f$的微分同态。我们将证明,如果$h$使$f$的每个水平集的每个正则分量不变并反转其方向,则$h^2$是通过$f$保持同位素与$M$的恒等映射的同位素。这个命题可以看作是一个众所周知的观察的叶状和同伦的类比,即平面的每一个反转方向正交同构都有阶$2$,即关于某条线的镜像对称。所得结果实际上适用于从紧致可定向曲面到实线和圆的更大一类具有孤立奇点的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reversing orientation homeomorphisms of surfaces
Let $M$ be a connected compact orientable surface, $f:M\to \mathbb{R}$ be a Morse function, and $h:M\to M$ be a diffeomorphism which preserves $f$ in the sense that $f\circ h = f$. We will show that if $h$ leaves invariant each regular component of each level set of $f$ and reverses its orientation, then $h^2$ is isotopic to the identity map of $M$ via $f$-preserving isotopy. This statement can be regarded as a foliated and a homotopy analogue of a well known observation that every reversing orientation orthogonal isomorphism of a plane has order $2$, i.e. a mirror symmetry with respect to some line. The obtained results hold in fact for a larger class of maps with isolated singularities from compact orientable surfaces to the real line and the circle.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信