{"title":"用于玻璃熔体选择性加热的微波天线","authors":"M. Willert-Porada, T. Gerdes, A. Rosin","doi":"10.1109/MWSYM.2012.6259574","DOIUrl":null,"url":null,"abstract":"Glass processing is energy intensive, therefore the possibility to reduce energy consumption by selective energy intake into portions of glass using microwave heating is investigated. The paper describes how microwave radiation is guided into a limited volume of glass melt subjected to extrusion into a mold for forming. A parametric study is performed to establish the best geometry for the microwave antenna inside a plunger structure which is used industrially to feed glass melt into molds. Experimental proof and material issues are discussed.","PeriodicalId":6385,"journal":{"name":"2012 IEEE/MTT-S International Microwave Symposium Digest","volume":"118 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microwave antenna for selective heating of glass melts\",\"authors\":\"M. Willert-Porada, T. Gerdes, A. Rosin\",\"doi\":\"10.1109/MWSYM.2012.6259574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glass processing is energy intensive, therefore the possibility to reduce energy consumption by selective energy intake into portions of glass using microwave heating is investigated. The paper describes how microwave radiation is guided into a limited volume of glass melt subjected to extrusion into a mold for forming. A parametric study is performed to establish the best geometry for the microwave antenna inside a plunger structure which is used industrially to feed glass melt into molds. Experimental proof and material issues are discussed.\",\"PeriodicalId\":6385,\"journal\":{\"name\":\"2012 IEEE/MTT-S International Microwave Symposium Digest\",\"volume\":\"118 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/MTT-S International Microwave Symposium Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2012.6259574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/MTT-S International Microwave Symposium Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2012.6259574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microwave antenna for selective heating of glass melts
Glass processing is energy intensive, therefore the possibility to reduce energy consumption by selective energy intake into portions of glass using microwave heating is investigated. The paper describes how microwave radiation is guided into a limited volume of glass melt subjected to extrusion into a mold for forming. A parametric study is performed to establish the best geometry for the microwave antenna inside a plunger structure which is used industrially to feed glass melt into molds. Experimental proof and material issues are discussed.