含钙化合物作为高羧酸与甘油酯化反应催化剂的研究

Yuriy L. Zotov, D. M. Zapravdina, E. Shishkin, Y. Popov
{"title":"含钙化合物作为高羧酸与甘油酯化反应催化剂的研究","authors":"Yuriy L. Zotov, D. M. Zapravdina, E. Shishkin, Y. Popov","doi":"10.32362/2410-6593-2023-18-3-175-186","DOIUrl":null,"url":null,"abstract":"Objectives. To investigate the catalytic activity of calcium-containing basic catalysts for the esterification of glycerol with higher carboxylic acids in order to develop a low-waste technology for the production of multifunctional additives, as well as to assess the possibility of using the reaction products for the processing of polyvinyl chloride.Methods. The consumption of oleic acid during synthesis was monitored using a titrimetric method of analysis with visual indication. The structure of the synthesized calcium-containing catalysts was confirmed by infrared spectroscopy; elemental analysis was additionally performed for calcium glyceroxide. Quantitative and qualitative analyses of the resulting mixtures of oleic acid glycerides were carried out using chromato-mass spectrometry. A sample of a multifunctional additive was tested in a model formulation of a medical plastic compound based on polyvinyl chloride.Results. It is shown that the catalytic activity of calcium derivatives in the reaction of esterification of glycerol with higher carboxylic acids increases in the series СаО < Са(ОН)2 < Ca(C17H33COO)2 < Ca(C2H5O)2 < Ca(C4H9O)2 < Ca(C3H7O3)2, while the use of calcium glyceroxide as a catalyst in an amount from 1 to 6 mol % increases the conversion of carboxylic acid from 58 to 86% in 10 h of synthesis. However, varying the amount of calcium glyceroxide from 1.5 to 6 mol % results in no observed changes in the conversion of carboxylic acid. The multifunctional additive obtained by selecting calcium glyceroxide as a catalyst has a thermally stabilizing and plasticizing effect on the polymer composition. The introduction of the developed additive into the formulation of a polyvinyl chloride composition for medical purposes reduces the processing torque and time to reach the dry point. By combining these factors, energy costs during production were reduced by more than 11% compared to the control composition.Conclusions. It is established that calcium alcoholates catalyze the reaction of esterification of glycerol with oleic (or higher) acid to increase the conversion of the initial substances and selectivity for the formation of monoglycerides as compared with calcium oxide, hydroxide, and oleate. By optimizing the ratio of glycerol : oleic acid : calcium glyceroxide at 1 : 1 : 0.015, the maximum conversion of oleic acid of up to 86% in 10 h was obtained via synthesis. The proposed method for esterification of glycerol with higher carboxylic acids in the presence of a calcium-containing catalyst avoids the stage of purification from the catalyst to obtain a composition with multifunctional additive properties for the processing of polyvinyl chloride.","PeriodicalId":12215,"journal":{"name":"Fine Chemical Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of calcium-containing compounds as catalysts for the esterification of glycerol with higher carboxylic acids\",\"authors\":\"Yuriy L. Zotov, D. M. Zapravdina, E. Shishkin, Y. Popov\",\"doi\":\"10.32362/2410-6593-2023-18-3-175-186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives. To investigate the catalytic activity of calcium-containing basic catalysts for the esterification of glycerol with higher carboxylic acids in order to develop a low-waste technology for the production of multifunctional additives, as well as to assess the possibility of using the reaction products for the processing of polyvinyl chloride.Methods. The consumption of oleic acid during synthesis was monitored using a titrimetric method of analysis with visual indication. The structure of the synthesized calcium-containing catalysts was confirmed by infrared spectroscopy; elemental analysis was additionally performed for calcium glyceroxide. Quantitative and qualitative analyses of the resulting mixtures of oleic acid glycerides were carried out using chromato-mass spectrometry. A sample of a multifunctional additive was tested in a model formulation of a medical plastic compound based on polyvinyl chloride.Results. It is shown that the catalytic activity of calcium derivatives in the reaction of esterification of glycerol with higher carboxylic acids increases in the series СаО < Са(ОН)2 < Ca(C17H33COO)2 < Ca(C2H5O)2 < Ca(C4H9O)2 < Ca(C3H7O3)2, while the use of calcium glyceroxide as a catalyst in an amount from 1 to 6 mol % increases the conversion of carboxylic acid from 58 to 86% in 10 h of synthesis. However, varying the amount of calcium glyceroxide from 1.5 to 6 mol % results in no observed changes in the conversion of carboxylic acid. The multifunctional additive obtained by selecting calcium glyceroxide as a catalyst has a thermally stabilizing and plasticizing effect on the polymer composition. The introduction of the developed additive into the formulation of a polyvinyl chloride composition for medical purposes reduces the processing torque and time to reach the dry point. By combining these factors, energy costs during production were reduced by more than 11% compared to the control composition.Conclusions. It is established that calcium alcoholates catalyze the reaction of esterification of glycerol with oleic (or higher) acid to increase the conversion of the initial substances and selectivity for the formation of monoglycerides as compared with calcium oxide, hydroxide, and oleate. By optimizing the ratio of glycerol : oleic acid : calcium glyceroxide at 1 : 1 : 0.015, the maximum conversion of oleic acid of up to 86% in 10 h was obtained via synthesis. The proposed method for esterification of glycerol with higher carboxylic acids in the presence of a calcium-containing catalyst avoids the stage of purification from the catalyst to obtain a composition with multifunctional additive properties for the processing of polyvinyl chloride.\",\"PeriodicalId\":12215,\"journal\":{\"name\":\"Fine Chemical Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fine Chemical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32362/2410-6593-2023-18-3-175-186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fine Chemical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32362/2410-6593-2023-18-3-175-186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标。研究含钙碱性催化剂对高羧酸与甘油酯化反应的催化活性,为开发多功能添加剂的低废生产技术提供依据,并探讨反应产物用于聚氯乙烯加工的可能性。油酸的消耗在合成过程中监测使用滴定法分析与视觉指示。用红外光谱对合成的含钙催化剂的结构进行了验证;另外对甘油氧化钙进行元素分析。采用色谱质谱法对所得油酸甘油酯混合物进行定量和定性分析。在基于聚氯乙烯的医用塑料化合物的模型配方中测试了多功能添加剂的样品。结果表明,钙衍生物在甘油与高羧酸酯化反应中的催化活性依次为СаО < Са(ОН)2 < Ca(C17H33COO)2 < Ca(C2H5O)2 < Ca(c4h90o)2 < Ca(C3H7O3)2,而在1 ~ 6 mol %的甘油氧化钙催化下,羧酸的转化率在10 h内由58%提高到86%。然而,将甘油氧化钙的量从1.5 mol %变化到6 mol %,对羧酸的转化没有观察到变化。选用甘油氧化钙作为催化剂制备的多功能添加剂对聚合物组合物具有热稳定和增塑作用。将所开发的添加剂引入用于医疗目的的聚氯乙烯组合物的配方中,减少了达到干点的加工扭矩和时间。通过综合这些因素,生产过程中的能源成本与对照成分相比降低了11%以上。与氧化钙、氢氧化物和油酸相比,醇酸钙催化甘油与油酸(或更高)的酯化反应,增加了初始物质的转化率和形成单甘油酯的选择性。通过优化甘油:油酸:甘油氧化钙的比例为1:1:1 .015,在10 h内油酸的最大转化率可达86%。所提出的在含钙催化剂存在下将甘油与高羧酸酯化的方法避免了从催化剂中提纯以获得用于聚氯乙烯加工的具有多功能添加剂性质的组合物的阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of calcium-containing compounds as catalysts for the esterification of glycerol with higher carboxylic acids
Objectives. To investigate the catalytic activity of calcium-containing basic catalysts for the esterification of glycerol with higher carboxylic acids in order to develop a low-waste technology for the production of multifunctional additives, as well as to assess the possibility of using the reaction products for the processing of polyvinyl chloride.Methods. The consumption of oleic acid during synthesis was monitored using a titrimetric method of analysis with visual indication. The structure of the synthesized calcium-containing catalysts was confirmed by infrared spectroscopy; elemental analysis was additionally performed for calcium glyceroxide. Quantitative and qualitative analyses of the resulting mixtures of oleic acid glycerides were carried out using chromato-mass spectrometry. A sample of a multifunctional additive was tested in a model formulation of a medical plastic compound based on polyvinyl chloride.Results. It is shown that the catalytic activity of calcium derivatives in the reaction of esterification of glycerol with higher carboxylic acids increases in the series СаО < Са(ОН)2 < Ca(C17H33COO)2 < Ca(C2H5O)2 < Ca(C4H9O)2 < Ca(C3H7O3)2, while the use of calcium glyceroxide as a catalyst in an amount from 1 to 6 mol % increases the conversion of carboxylic acid from 58 to 86% in 10 h of synthesis. However, varying the amount of calcium glyceroxide from 1.5 to 6 mol % results in no observed changes in the conversion of carboxylic acid. The multifunctional additive obtained by selecting calcium glyceroxide as a catalyst has a thermally stabilizing and plasticizing effect on the polymer composition. The introduction of the developed additive into the formulation of a polyvinyl chloride composition for medical purposes reduces the processing torque and time to reach the dry point. By combining these factors, energy costs during production were reduced by more than 11% compared to the control composition.Conclusions. It is established that calcium alcoholates catalyze the reaction of esterification of glycerol with oleic (or higher) acid to increase the conversion of the initial substances and selectivity for the formation of monoglycerides as compared with calcium oxide, hydroxide, and oleate. By optimizing the ratio of glycerol : oleic acid : calcium glyceroxide at 1 : 1 : 0.015, the maximum conversion of oleic acid of up to 86% in 10 h was obtained via synthesis. The proposed method for esterification of glycerol with higher carboxylic acids in the presence of a calcium-containing catalyst avoids the stage of purification from the catalyst to obtain a composition with multifunctional additive properties for the processing of polyvinyl chloride.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信