可转换非凸优化的优化条件和可分解算法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Jiang, R. Shen, Z. Meng, C. Y. Dang
{"title":"可转换非凸优化的优化条件和可分解算法","authors":"M. Jiang, R. Shen, Z. Meng, C. Y. Dang","doi":"10.23952/jnva.7.2023.1.07","DOIUrl":null,"url":null,"abstract":"This paper defines a convertible nonconvex function(CN function for short) and a weak (strong) uniform (decomposable, exact) CN function, proves the optimization conditions for their global solutions and proposes algorithms for solving the unconstrained optimization problems with the decomposable CN function. First, to illustrate the fact that some nonconvex functions, nonsmooth or discontinuous, are actually weak uniform CN functions, examples are given. The operational properties of the CN functions are proved, including addition, subtraction, multiplication, division and compound operations. Second, optimization conditions of the global optimal solution to unconstrained optimization with a weak uniform CN function are proved. Based on the unconstrained optimization problem with the decomposable CN function, a decomposable algorithm is proposed by its augmented Lagrangian penalty function and its convergence is proved. Numerical results show that an approximate global optimal solution to unconstrained optimization with a CN function may be obtained by the decomposable algorithms. The decomposable algorithm can effectively reduce the scale in solving the unconstrained optimization problem with the decomposable CN function. This paper provides a new idea for solving unconstrained nonconvex optimization problems.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization conditions and decomposable algorithms for convertible nonconvex optimization\",\"authors\":\"M. Jiang, R. Shen, Z. Meng, C. Y. Dang\",\"doi\":\"10.23952/jnva.7.2023.1.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper defines a convertible nonconvex function(CN function for short) and a weak (strong) uniform (decomposable, exact) CN function, proves the optimization conditions for their global solutions and proposes algorithms for solving the unconstrained optimization problems with the decomposable CN function. First, to illustrate the fact that some nonconvex functions, nonsmooth or discontinuous, are actually weak uniform CN functions, examples are given. The operational properties of the CN functions are proved, including addition, subtraction, multiplication, division and compound operations. Second, optimization conditions of the global optimal solution to unconstrained optimization with a weak uniform CN function are proved. Based on the unconstrained optimization problem with the decomposable CN function, a decomposable algorithm is proposed by its augmented Lagrangian penalty function and its convergence is proved. Numerical results show that an approximate global optimal solution to unconstrained optimization with a CN function may be obtained by the decomposable algorithms. The decomposable algorithm can effectively reduce the scale in solving the unconstrained optimization problem with the decomposable CN function. This paper provides a new idea for solving unconstrained nonconvex optimization problems.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.23952/jnva.7.2023.1.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.7.2023.1.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了可转换非凸函数(简称CN函数)和弱(强)一致(可分解,精确)CN函数,证明了它们全局解的优化条件,并提出了求解可分解CN函数的无约束优化问题的算法。首先,为了说明一些非凸函数、非光滑函数或不连续函数实际上是弱一致CN函数,给出了一些例子。证明了CN函数的运算性质,包括加、减、乘、除和复合运算。其次,证明了具有弱一致CN函数的无约束优化全局最优解的优化条件。针对具有可分解CN函数的无约束优化问题,提出了一种利用其增广拉格朗日惩罚函数的可分解算法,并证明了该算法的收敛性。数值结果表明,利用可分解算法可以得到具有CN函数的无约束优化问题的近似全局最优解。可分解算法在求解具有可分解CN函数的无约束优化问题时,可以有效地减小规模。本文为求解无约束非凸优化问题提供了一种新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization conditions and decomposable algorithms for convertible nonconvex optimization
This paper defines a convertible nonconvex function(CN function for short) and a weak (strong) uniform (decomposable, exact) CN function, proves the optimization conditions for their global solutions and proposes algorithms for solving the unconstrained optimization problems with the decomposable CN function. First, to illustrate the fact that some nonconvex functions, nonsmooth or discontinuous, are actually weak uniform CN functions, examples are given. The operational properties of the CN functions are proved, including addition, subtraction, multiplication, division and compound operations. Second, optimization conditions of the global optimal solution to unconstrained optimization with a weak uniform CN function are proved. Based on the unconstrained optimization problem with the decomposable CN function, a decomposable algorithm is proposed by its augmented Lagrangian penalty function and its convergence is proved. Numerical results show that an approximate global optimal solution to unconstrained optimization with a CN function may be obtained by the decomposable algorithms. The decomposable algorithm can effectively reduce the scale in solving the unconstrained optimization problem with the decomposable CN function. This paper provides a new idea for solving unconstrained nonconvex optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信