{"title":"实时流应用的交互式数据清理","authors":"Timo Räth, Ngozichukwuka Onah, K. Sattler","doi":"10.1145/3597465.3605229","DOIUrl":null,"url":null,"abstract":"The importance of data cleaning systems has continuously grown in recent years. Especially for real-time streaming applications, it is crucial, to identify and possibly remove anomalies in the data on the fly before further processing. The main challenge however lies in the construction of an appropriate data cleaning pipeline, which is complicated by the dynamic nature of streaming applications. To simplify this process and help data scientists to explore and understand the incoming data, we propose an interactive data cleaning system for streaming applications. In this paper, we list requirements for such a system and present our implementation to overcome the stated issues. Our demonstration shows, how a data cleaning pipeline can be interactively created, executed, and monitored at runtime. We also present several different tools, such as the automated advisor and the adaptive visualizer, that engage the user in the data cleaning process and help them understand the behavior of the pipeline.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive Data Cleaning for Real-Time Streaming Applications\",\"authors\":\"Timo Räth, Ngozichukwuka Onah, K. Sattler\",\"doi\":\"10.1145/3597465.3605229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of data cleaning systems has continuously grown in recent years. Especially for real-time streaming applications, it is crucial, to identify and possibly remove anomalies in the data on the fly before further processing. The main challenge however lies in the construction of an appropriate data cleaning pipeline, which is complicated by the dynamic nature of streaming applications. To simplify this process and help data scientists to explore and understand the incoming data, we propose an interactive data cleaning system for streaming applications. In this paper, we list requirements for such a system and present our implementation to overcome the stated issues. Our demonstration shows, how a data cleaning pipeline can be interactively created, executed, and monitored at runtime. We also present several different tools, such as the automated advisor and the adaptive visualizer, that engage the user in the data cleaning process and help them understand the behavior of the pipeline.\",\"PeriodicalId\":92279,\"journal\":{\"name\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3597465.3605229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597465.3605229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interactive Data Cleaning for Real-Time Streaming Applications
The importance of data cleaning systems has continuously grown in recent years. Especially for real-time streaming applications, it is crucial, to identify and possibly remove anomalies in the data on the fly before further processing. The main challenge however lies in the construction of an appropriate data cleaning pipeline, which is complicated by the dynamic nature of streaming applications. To simplify this process and help data scientists to explore and understand the incoming data, we propose an interactive data cleaning system for streaming applications. In this paper, we list requirements for such a system and present our implementation to overcome the stated issues. Our demonstration shows, how a data cleaning pipeline can be interactively created, executed, and monitored at runtime. We also present several different tools, such as the automated advisor and the adaptive visualizer, that engage the user in the data cleaning process and help them understand the behavior of the pipeline.