{"title":"高分子材料烧蚀电弧点火过程电弧特性的数值预测","authors":"Yusuke Nakano, Yasunori Tanaka, Tatsuo Ishijima, Daiki Nagai, Kentaro Inenaga","doi":"10.1002/eej.23373","DOIUrl":null,"url":null,"abstract":"<p>Characteristics of ignition process of polymer-ablated arc with different current values were investigated with electromagnetic thermofluid analysis. This thermofluid simulation is based on calculated particle composition, thermodynamic and transport properties of evaporated vapor of polymer material and electrode material. Polymer ablation was assumed to occur by heat flux from the arc plasma. The initiation of polymer ablation was studied for different polymer materials because polymer ablation can affect arc behavior and then arc interruption ability. Results showed that it took time of milli- to tens milliseconds to initiate polymer ablation, and that its initiation time decreases with increasing current.</p>","PeriodicalId":50550,"journal":{"name":"Electrical Engineering in Japan","volume":"215 2","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical prediction on arc characteristics for various polymer materials during polymer-ablated arc ignition process\",\"authors\":\"Yusuke Nakano, Yasunori Tanaka, Tatsuo Ishijima, Daiki Nagai, Kentaro Inenaga\",\"doi\":\"10.1002/eej.23373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Characteristics of ignition process of polymer-ablated arc with different current values were investigated with electromagnetic thermofluid analysis. This thermofluid simulation is based on calculated particle composition, thermodynamic and transport properties of evaporated vapor of polymer material and electrode material. Polymer ablation was assumed to occur by heat flux from the arc plasma. The initiation of polymer ablation was studied for different polymer materials because polymer ablation can affect arc behavior and then arc interruption ability. Results showed that it took time of milli- to tens milliseconds to initiate polymer ablation, and that its initiation time decreases with increasing current.</p>\",\"PeriodicalId\":50550,\"journal\":{\"name\":\"Electrical Engineering in Japan\",\"volume\":\"215 2\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Engineering in Japan\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eej.23373\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eej.23373","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Numerical prediction on arc characteristics for various polymer materials during polymer-ablated arc ignition process
Characteristics of ignition process of polymer-ablated arc with different current values were investigated with electromagnetic thermofluid analysis. This thermofluid simulation is based on calculated particle composition, thermodynamic and transport properties of evaporated vapor of polymer material and electrode material. Polymer ablation was assumed to occur by heat flux from the arc plasma. The initiation of polymer ablation was studied for different polymer materials because polymer ablation can affect arc behavior and then arc interruption ability. Results showed that it took time of milli- to tens milliseconds to initiate polymer ablation, and that its initiation time decreases with increasing current.
期刊介绍:
Electrical Engineering in Japan (EEJ) is an official journal of the Institute of Electrical Engineers of Japan (IEEJ). This authoritative journal is a translation of the Transactions of the Institute of Electrical Engineers of Japan. It publishes 16 issues a year on original research findings in Electrical Engineering with special focus on the science, technology and applications of electric power, such as power generation, transmission and conversion, electric railways (including magnetic levitation devices), motors, switching, power economics.