S. Indurthi, HyoJung Han, Nikhil Kumar Lakumarapu, Beomseok Lee, Insoo Chung, Sangha Kim, Chanwoo Kim
{"title":"基于情态不可知元学习的端到端语音到文本翻译","authors":"S. Indurthi, HyoJung Han, Nikhil Kumar Lakumarapu, Beomseok Lee, Insoo Chung, Sangha Kim, Chanwoo Kim","doi":"10.1109/ICASSP40776.2020.9054759","DOIUrl":null,"url":null,"abstract":"Collecting large amounts of data to train end-to-end Speech Translation (ST) models is more difficult compared to the ASR and MT tasks. Previous studies have proposed the use of transfer learning approaches to overcome the above difficulty. These approaches benefit from weakly supervised training data, such as ASR speech-to-transcript or MT text-to-text translation pairs. However, the parameters in these models are updated independently of each task, which may lead to sub-optimal solutions. In this work, we adopt a meta-learning algorithm to train a modality agnostic multi-task model that transfers knowledge from source tasks=ASR+MT to target task=ST where the ST task severely lacks data. In the meta-learning phase, parameters are updated in such a way that they act as a good ini-tialization point for the target ST task. We evaluate the proposed meta-learning approach for ST tasks on English-German (En-De) and English-French (En-Fr) language pairs from the Multilingual Speech Translation Corpus (MuST-C). Our method outperforms the previous transfer learning approaches and sets new state-of-the-art results for En-De and En-Fr ST tasks by obtaining 9.18, and 11.76 BLEU point improvements, respectively.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"145 6 1","pages":"7904-7908"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"End-end Speech-to-Text Translation with Modality Agnostic Meta-Learning\",\"authors\":\"S. Indurthi, HyoJung Han, Nikhil Kumar Lakumarapu, Beomseok Lee, Insoo Chung, Sangha Kim, Chanwoo Kim\",\"doi\":\"10.1109/ICASSP40776.2020.9054759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collecting large amounts of data to train end-to-end Speech Translation (ST) models is more difficult compared to the ASR and MT tasks. Previous studies have proposed the use of transfer learning approaches to overcome the above difficulty. These approaches benefit from weakly supervised training data, such as ASR speech-to-transcript or MT text-to-text translation pairs. However, the parameters in these models are updated independently of each task, which may lead to sub-optimal solutions. In this work, we adopt a meta-learning algorithm to train a modality agnostic multi-task model that transfers knowledge from source tasks=ASR+MT to target task=ST where the ST task severely lacks data. In the meta-learning phase, parameters are updated in such a way that they act as a good ini-tialization point for the target ST task. We evaluate the proposed meta-learning approach for ST tasks on English-German (En-De) and English-French (En-Fr) language pairs from the Multilingual Speech Translation Corpus (MuST-C). Our method outperforms the previous transfer learning approaches and sets new state-of-the-art results for En-De and En-Fr ST tasks by obtaining 9.18, and 11.76 BLEU point improvements, respectively.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"145 6 1\",\"pages\":\"7904-7908\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9054759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-end Speech-to-Text Translation with Modality Agnostic Meta-Learning
Collecting large amounts of data to train end-to-end Speech Translation (ST) models is more difficult compared to the ASR and MT tasks. Previous studies have proposed the use of transfer learning approaches to overcome the above difficulty. These approaches benefit from weakly supervised training data, such as ASR speech-to-transcript or MT text-to-text translation pairs. However, the parameters in these models are updated independently of each task, which may lead to sub-optimal solutions. In this work, we adopt a meta-learning algorithm to train a modality agnostic multi-task model that transfers knowledge from source tasks=ASR+MT to target task=ST where the ST task severely lacks data. In the meta-learning phase, parameters are updated in such a way that they act as a good ini-tialization point for the target ST task. We evaluate the proposed meta-learning approach for ST tasks on English-German (En-De) and English-French (En-Fr) language pairs from the Multilingual Speech Translation Corpus (MuST-C). Our method outperforms the previous transfer learning approaches and sets new state-of-the-art results for En-De and En-Fr ST tasks by obtaining 9.18, and 11.76 BLEU point improvements, respectively.