在每个方向上都有一个单位距离的集合上

Pablo Shmerkin, Han Yu
{"title":"在每个方向上都有一个单位距离的集合上","authors":"Pablo Shmerkin, Han Yu","doi":"10.19086/DA.22058","DOIUrl":null,"url":null,"abstract":"We investigate the box dimensions of compact sets in $\\mathbb{R}^n$ that contain a unit distance in every direction (such sets may have zero Hausdorff dimension). Among other results, we show that the lower box dimension must be at least $\\frac{n^2(n-1)}{2n^2-1}$ and can be at most $\\frac{n(n-1)}{2n-1}$. This quantifies in a certain sense how far the unit sphere $S^{n-1}$ is from being a difference set.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sets containing a unit distance in every direction\",\"authors\":\"Pablo Shmerkin, Han Yu\",\"doi\":\"10.19086/DA.22058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the box dimensions of compact sets in $\\\\mathbb{R}^n$ that contain a unit distance in every direction (such sets may have zero Hausdorff dimension). Among other results, we show that the lower box dimension must be at least $\\\\frac{n^2(n-1)}{2n^2-1}$ and can be at most $\\\\frac{n(n-1)}{2n-1}$. This quantifies in a certain sense how far the unit sphere $S^{n-1}$ is from being a difference set.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19086/DA.22058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/DA.22058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了$\mathbb{R}^n$中包含每个方向上的单位距离的紧集的盒维数(这样的集可能具有零Hausdorff维数)。在其他结果中,我们证明了下盒维数必须至少为$\frac{n^2(n-1)}{2n^2-1}$,并且可以最多为$\frac{n(n-1)}{2n-1}$。这在一定意义上量化了单位球$S^{n-1}$离差分集有多远。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On sets containing a unit distance in every direction
We investigate the box dimensions of compact sets in $\mathbb{R}^n$ that contain a unit distance in every direction (such sets may have zero Hausdorff dimension). Among other results, we show that the lower box dimension must be at least $\frac{n^2(n-1)}{2n^2-1}$ and can be at most $\frac{n(n-1)}{2n-1}$. This quantifies in a certain sense how far the unit sphere $S^{n-1}$ is from being a difference set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信