{"title":"在每个方向上都有一个单位距离的集合上","authors":"Pablo Shmerkin, Han Yu","doi":"10.19086/DA.22058","DOIUrl":null,"url":null,"abstract":"We investigate the box dimensions of compact sets in $\\mathbb{R}^n$ that contain a unit distance in every direction (such sets may have zero Hausdorff dimension). Among other results, we show that the lower box dimension must be at least $\\frac{n^2(n-1)}{2n^2-1}$ and can be at most $\\frac{n(n-1)}{2n-1}$. This quantifies in a certain sense how far the unit sphere $S^{n-1}$ is from being a difference set.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sets containing a unit distance in every direction\",\"authors\":\"Pablo Shmerkin, Han Yu\",\"doi\":\"10.19086/DA.22058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the box dimensions of compact sets in $\\\\mathbb{R}^n$ that contain a unit distance in every direction (such sets may have zero Hausdorff dimension). Among other results, we show that the lower box dimension must be at least $\\\\frac{n^2(n-1)}{2n^2-1}$ and can be at most $\\\\frac{n(n-1)}{2n-1}$. This quantifies in a certain sense how far the unit sphere $S^{n-1}$ is from being a difference set.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19086/DA.22058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/DA.22058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On sets containing a unit distance in every direction
We investigate the box dimensions of compact sets in $\mathbb{R}^n$ that contain a unit distance in every direction (such sets may have zero Hausdorff dimension). Among other results, we show that the lower box dimension must be at least $\frac{n^2(n-1)}{2n^2-1}$ and can be at most $\frac{n(n-1)}{2n-1}$. This quantifies in a certain sense how far the unit sphere $S^{n-1}$ is from being a difference set.