非厄米正定线性系统的广义双扫描位移分裂方法

IF 0.5 4区 数学 Q3 MATHEMATICS
Shiliang Wu, Cuixia Li
{"title":"非厄米正定线性系统的广义双扫描位移分裂方法","authors":"Shiliang Wu, Cuixia Li","doi":"10.3336/gm.57.1.10","DOIUrl":null,"url":null,"abstract":"In this paper, based on the shift splitting of the\ncoefficient matrix, a generalized two-sweep shift splitting (GTSS)\nmethod is introduced to solve the non-Hermitian positive definite\nlinear systems. Theoretical analysis shows that the GTSS method is\nconvergent to the unique solution of the linear systems under a\nloose restriction on the iteration parameter. Numerical experiments\nare reported to the efficiency of the GTSS method.","PeriodicalId":55601,"journal":{"name":"Glasnik Matematicki","volume":"88 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized two-sweep shift splitting method\\nfor non-Hermitian positive definite linear systems\",\"authors\":\"Shiliang Wu, Cuixia Li\",\"doi\":\"10.3336/gm.57.1.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, based on the shift splitting of the\\ncoefficient matrix, a generalized two-sweep shift splitting (GTSS)\\nmethod is introduced to solve the non-Hermitian positive definite\\nlinear systems. Theoretical analysis shows that the GTSS method is\\nconvergent to the unique solution of the linear systems under a\\nloose restriction on the iteration parameter. Numerical experiments\\nare reported to the efficiency of the GTSS method.\",\"PeriodicalId\":55601,\"journal\":{\"name\":\"Glasnik Matematicki\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasnik Matematicki\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.1.10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasnik Matematicki","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.1.10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文基于系数矩阵的移位分裂,提出了一种求解非厄米正定线性系统的广义双扫描移位分裂(GTSS)方法。理论分析表明,GTSS方法在迭代参数限制较松的情况下收敛于线性系统的唯一解。数值实验证明了GTSS方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized two-sweep shift splitting method for non-Hermitian positive definite linear systems
In this paper, based on the shift splitting of the coefficient matrix, a generalized two-sweep shift splitting (GTSS) method is introduced to solve the non-Hermitian positive definite linear systems. Theoretical analysis shows that the GTSS method is convergent to the unique solution of the linear systems under a loose restriction on the iteration parameter. Numerical experiments are reported to the efficiency of the GTSS method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glasnik Matematicki
Glasnik Matematicki MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.80
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: Glasnik Matematicki publishes original research papers from all fields of pure and applied mathematics. The journal is published semiannually, in June and in December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信