广义weierstrass型函数图的盒维数

IF 1.1 3区 数学 Q1 MATHEMATICS
Haojie Ren
{"title":"广义weierstrass型函数图的盒维数","authors":"Haojie Ren","doi":"10.3934/dcds.2023068","DOIUrl":null,"url":null,"abstract":"For a Lipschitz $\\mathbb{Z}-$periodic function $\\phi:\\mathbb{R}\\to \\mathbb{R}^2$ satisfied that $\\mathbb{R}^2\\setminus\\{\\phi(x):x\\in\\mathbb{R}\\}$ is not connected, an integer $b\\ge 2$ and $\\lambda\\in (c/{b^{\\frac12}},1)$, we prove the following for the generalized Weierstrass-type function $W(x)=\\sum\\limits_{n=0}^{\\infty}{{\\lambda}^n\\phi(b^nx)}$: the box dimension of its graph is equal to $3+2\\log_b\\lambda$, where $c$ is a constant depending on $\\phi$.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"50 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Box dimension of the graphs of the generalized Weierstrass-type functions\",\"authors\":\"Haojie Ren\",\"doi\":\"10.3934/dcds.2023068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a Lipschitz $\\\\mathbb{Z}-$periodic function $\\\\phi:\\\\mathbb{R}\\\\to \\\\mathbb{R}^2$ satisfied that $\\\\mathbb{R}^2\\\\setminus\\\\{\\\\phi(x):x\\\\in\\\\mathbb{R}\\\\}$ is not connected, an integer $b\\\\ge 2$ and $\\\\lambda\\\\in (c/{b^{\\\\frac12}},1)$, we prove the following for the generalized Weierstrass-type function $W(x)=\\\\sum\\\\limits_{n=0}^{\\\\infty}{{\\\\lambda}^n\\\\phi(b^nx)}$: the box dimension of its graph is equal to $3+2\\\\log_b\\\\lambda$, where $c$ is a constant depending on $\\\\phi$.\",\"PeriodicalId\":51007,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023068\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcds.2023068","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

为了利普希茨 $\mathbb{Z}-$周期函数 $\phi:\mathbb{R}\to \mathbb{R}^2$ 满意了吗? $\mathbb{R}^2\setminus\{\phi(x):x\in\mathbb{R}\}$ 是未连接的,是整数吗 $b\ge 2$ 和 $\lambda\in (c/{b^{\frac12}},1)$,我们证明了广义weierstrass型函数的如下性质 $W(x)=\sum\limits_{n=0}^{\infty}{{\lambda}^n\phi(b^nx)}$:其图的盒维数为 $3+2\log_b\lambda$,其中 $c$ 常数是否取决于 $\phi$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Box dimension of the graphs of the generalized Weierstrass-type functions
For a Lipschitz $\mathbb{Z}-$periodic function $\phi:\mathbb{R}\to \mathbb{R}^2$ satisfied that $\mathbb{R}^2\setminus\{\phi(x):x\in\mathbb{R}\}$ is not connected, an integer $b\ge 2$ and $\lambda\in (c/{b^{\frac12}},1)$, we prove the following for the generalized Weierstrass-type function $W(x)=\sum\limits_{n=0}^{\infty}{{\lambda}^n\phi(b^nx)}$: the box dimension of its graph is equal to $3+2\log_b\lambda$, where $c$ is a constant depending on $\phi$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信