{"title":"汽车制动系统的非线性动力学与控制","authors":"Shun-Chang Chang, Jui-Feng Hu","doi":"10.4172/2167-7670.1000135","DOIUrl":null,"url":null,"abstract":"Brake squeal is a manifestation of friction-induced self-excited instability in disc brake systems. This study investigated non-smooth bifurcations and chaotic dynamics in disc brake systems and elucidated a chaotic control system. Decreasing squeal noise which is dependent on chaos, increases passengers comfort; consequently, suppressing chaos is crucial. First, synchronization was used to estimate the largest Lyapunov exponent to identify periodic and chaotic motions. Next, complex nonlinear behaviors were thoroughly observed for a range of parameter values in the bifurcation diagram. Rich dynamics of the disc brake system were studied using a bifurcation diagram, phase portraits, a Poincare map, frequency spectra, and Lyapunov exponents. Finally, the proposed technique was applied to a chaotic disc brake system through the addition of an external input that is a dither signal. Simulation results demonstrated the feasibility of the proposed approach.","PeriodicalId":7286,"journal":{"name":"Advances in Automobile Engineering","volume":"49 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinear Dynamics and Control in an Automotive Brake System\",\"authors\":\"Shun-Chang Chang, Jui-Feng Hu\",\"doi\":\"10.4172/2167-7670.1000135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brake squeal is a manifestation of friction-induced self-excited instability in disc brake systems. This study investigated non-smooth bifurcations and chaotic dynamics in disc brake systems and elucidated a chaotic control system. Decreasing squeal noise which is dependent on chaos, increases passengers comfort; consequently, suppressing chaos is crucial. First, synchronization was used to estimate the largest Lyapunov exponent to identify periodic and chaotic motions. Next, complex nonlinear behaviors were thoroughly observed for a range of parameter values in the bifurcation diagram. Rich dynamics of the disc brake system were studied using a bifurcation diagram, phase portraits, a Poincare map, frequency spectra, and Lyapunov exponents. Finally, the proposed technique was applied to a chaotic disc brake system through the addition of an external input that is a dither signal. Simulation results demonstrated the feasibility of the proposed approach.\",\"PeriodicalId\":7286,\"journal\":{\"name\":\"Advances in Automobile Engineering\",\"volume\":\"49 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Automobile Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2167-7670.1000135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Automobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2167-7670.1000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear Dynamics and Control in an Automotive Brake System
Brake squeal is a manifestation of friction-induced self-excited instability in disc brake systems. This study investigated non-smooth bifurcations and chaotic dynamics in disc brake systems and elucidated a chaotic control system. Decreasing squeal noise which is dependent on chaos, increases passengers comfort; consequently, suppressing chaos is crucial. First, synchronization was used to estimate the largest Lyapunov exponent to identify periodic and chaotic motions. Next, complex nonlinear behaviors were thoroughly observed for a range of parameter values in the bifurcation diagram. Rich dynamics of the disc brake system were studied using a bifurcation diagram, phase portraits, a Poincare map, frequency spectra, and Lyapunov exponents. Finally, the proposed technique was applied to a chaotic disc brake system through the addition of an external input that is a dither signal. Simulation results demonstrated the feasibility of the proposed approach.