P. Chandra, V. Kumar, R. Kiran, D. R. Kumar, C. P. Rao, R. Suresh
{"title":"赤泥复合材料增强Al6061的制备、表征及加工","authors":"P. Chandra, V. Kumar, R. Kiran, D. R. Kumar, C. P. Rao, R. Suresh","doi":"10.4236/jmmce.2022.101003","DOIUrl":null,"url":null,"abstract":"The Metal Matrix Composites application has increased in many areas of science and technology, because of its additional physical, wear and mechanical properties. In comparison with all MMC’s, aluminum-based MMC’s are finding wide applications due to their better strength to weight ratio, better stiffness, and high thermal conductivity as well as very good wear and corrosion properties. The properties of a composite mainly depend on better distribution of reinforcement in the matrix, which is very difficult to achieve. Basically Redmud is a byproduct of alumina, and it is waste product obtained during Bayer’s process. This waste product must be recycled else it may be dangerous to the environment. Redmud can be used as reinforcement for aluminium composites in order to achieve better properties. The proposed research work includes preparation of Aluminum 6061-Red mud metal matrix composites using liquid metallurgy route following stir casting technique. An alloy Al6061 containing 0.60 percent silicon and Magnesium of 0.82 percent was used as the matrix material. Two different compositions of the Aluminum 6061-Red mud composites are prepared in addition to the base matrix and evaluated for mechanical properties also the force acting on the cutting tool at different spindle speeds during machining of the composite materials were analyzed.","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication, Characterization and Machining of Al6061 Reinforced with Red Mud Composite\",\"authors\":\"P. Chandra, V. Kumar, R. Kiran, D. R. Kumar, C. P. Rao, R. Suresh\",\"doi\":\"10.4236/jmmce.2022.101003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Metal Matrix Composites application has increased in many areas of science and technology, because of its additional physical, wear and mechanical properties. In comparison with all MMC’s, aluminum-based MMC’s are finding wide applications due to their better strength to weight ratio, better stiffness, and high thermal conductivity as well as very good wear and corrosion properties. The properties of a composite mainly depend on better distribution of reinforcement in the matrix, which is very difficult to achieve. Basically Redmud is a byproduct of alumina, and it is waste product obtained during Bayer’s process. This waste product must be recycled else it may be dangerous to the environment. Redmud can be used as reinforcement for aluminium composites in order to achieve better properties. The proposed research work includes preparation of Aluminum 6061-Red mud metal matrix composites using liquid metallurgy route following stir casting technique. An alloy Al6061 containing 0.60 percent silicon and Magnesium of 0.82 percent was used as the matrix material. Two different compositions of the Aluminum 6061-Red mud composites are prepared in addition to the base matrix and evaluated for mechanical properties also the force acting on the cutting tool at different spindle speeds during machining of the composite materials were analyzed.\",\"PeriodicalId\":16488,\"journal\":{\"name\":\"Journal of Minerals and Materials Characterization and Engineering\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Minerals and Materials Characterization and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jmmce.2022.101003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Minerals and Materials Characterization and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jmmce.2022.101003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication, Characterization and Machining of Al6061 Reinforced with Red Mud Composite
The Metal Matrix Composites application has increased in many areas of science and technology, because of its additional physical, wear and mechanical properties. In comparison with all MMC’s, aluminum-based MMC’s are finding wide applications due to their better strength to weight ratio, better stiffness, and high thermal conductivity as well as very good wear and corrosion properties. The properties of a composite mainly depend on better distribution of reinforcement in the matrix, which is very difficult to achieve. Basically Redmud is a byproduct of alumina, and it is waste product obtained during Bayer’s process. This waste product must be recycled else it may be dangerous to the environment. Redmud can be used as reinforcement for aluminium composites in order to achieve better properties. The proposed research work includes preparation of Aluminum 6061-Red mud metal matrix composites using liquid metallurgy route following stir casting technique. An alloy Al6061 containing 0.60 percent silicon and Magnesium of 0.82 percent was used as the matrix material. Two different compositions of the Aluminum 6061-Red mud composites are prepared in addition to the base matrix and evaluated for mechanical properties also the force acting on the cutting tool at different spindle speeds during machining of the composite materials were analyzed.