F. Nadaraju, A. Maddocks, J. Zanganeh, B. Moghtaderi
{"title":"通风空气甲烷:模拟一个优化的过程与电力和冷却减排","authors":"F. Nadaraju, A. Maddocks, J. Zanganeh, B. Moghtaderi","doi":"10.1080/25726668.2019.1704546","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ventilation air methane is low concentration methane (below 1 vol. %) emitted from an underground coal mine. High ventilation air volumes circulated through the mine, ensure that the methane remains at a safe concentration. In 2016, the Australian Government reported fugitive emissions of methane from underground coal mines at approximately 19.0 million tonnes (CO2-equivalent) which was about 4.0% of Australia's national greenhouse gas emissions. Therefore, an optimised process of heat recovery from a fluidised-bed VAM abatement reactor, to produce power and cooling was studied. For a ventilation flow rate of 20 m3/s, the minimum methane concentration for a direct gas turbine was 0.45 vol. % at a reactor temperature of 630°C and compressor pressure of 1.5 bar. An indirect gas turbine process operated with a minimum methane concentration was 0.4 vol. % at a reactor temperature of 630°C, compressor pressure of 4.0 bar and turbine flow rate of 2.2 kg/s.","PeriodicalId":44166,"journal":{"name":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","volume":"187 1","pages":"21 - 9"},"PeriodicalIF":1.8000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ventilation air methane: a simulation of an optimised process of abatement with power and cooling\",\"authors\":\"F. Nadaraju, A. Maddocks, J. Zanganeh, B. Moghtaderi\",\"doi\":\"10.1080/25726668.2019.1704546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Ventilation air methane is low concentration methane (below 1 vol. %) emitted from an underground coal mine. High ventilation air volumes circulated through the mine, ensure that the methane remains at a safe concentration. In 2016, the Australian Government reported fugitive emissions of methane from underground coal mines at approximately 19.0 million tonnes (CO2-equivalent) which was about 4.0% of Australia's national greenhouse gas emissions. Therefore, an optimised process of heat recovery from a fluidised-bed VAM abatement reactor, to produce power and cooling was studied. For a ventilation flow rate of 20 m3/s, the minimum methane concentration for a direct gas turbine was 0.45 vol. % at a reactor temperature of 630°C and compressor pressure of 1.5 bar. An indirect gas turbine process operated with a minimum methane concentration was 0.4 vol. % at a reactor temperature of 630°C, compressor pressure of 4.0 bar and turbine flow rate of 2.2 kg/s.\",\"PeriodicalId\":44166,\"journal\":{\"name\":\"Mining Technology-Transactions of the Institutions of Mining and Metallurgy\",\"volume\":\"187 1\",\"pages\":\"21 - 9\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining Technology-Transactions of the Institutions of Mining and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25726668.2019.1704546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726668.2019.1704546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Ventilation air methane: a simulation of an optimised process of abatement with power and cooling
ABSTRACT Ventilation air methane is low concentration methane (below 1 vol. %) emitted from an underground coal mine. High ventilation air volumes circulated through the mine, ensure that the methane remains at a safe concentration. In 2016, the Australian Government reported fugitive emissions of methane from underground coal mines at approximately 19.0 million tonnes (CO2-equivalent) which was about 4.0% of Australia's national greenhouse gas emissions. Therefore, an optimised process of heat recovery from a fluidised-bed VAM abatement reactor, to produce power and cooling was studied. For a ventilation flow rate of 20 m3/s, the minimum methane concentration for a direct gas turbine was 0.45 vol. % at a reactor temperature of 630°C and compressor pressure of 1.5 bar. An indirect gas turbine process operated with a minimum methane concentration was 0.4 vol. % at a reactor temperature of 630°C, compressor pressure of 4.0 bar and turbine flow rate of 2.2 kg/s.