基于客户使用基于用户合作过滤方法的用户驱动的市场应用程序推荐系统

Teknika Pub Date : 2022-11-14 DOI:10.34148/teknika.v11i3.538
Fajar Rohman Hariri, Lingga Wahyu Rochim
{"title":"基于客户使用基于用户合作过滤方法的用户驱动的市场应用程序推荐系统","authors":"Fajar Rohman Hariri, Lingga Wahyu Rochim","doi":"10.34148/teknika.v11i3.538","DOIUrl":null,"url":null,"abstract":"Sistem rekomendasi produk merupakan sebuah sistem yang dapat memberikan prediksi produk yang relevan terhadap perilaku atau karakteristik user, sehingga dapat mempengaruhi user dalam mengambil keputusan untuk membeli suatu produk. Penelitian ini dilakukan untuk dapat memberikan rekomendasi kepada pembeli pada aplikasi marketplace Sindomall dengan menggunakan metode User Based Collaborative Filtering dikolaborasikan dengan algoritma Improved Triangle Similarity Complemented with User Rating Preferences (ITR) untuk menghitung nilai similarity antar pembeli dan algoritma Weighted Sum untuk menghitung nilai prediksi produk. Karakteristik pembeli diambil dari data perilaku pembeli dalam memberikan rating pada produk. Dalam pengujian model yang dilakukan dengan menggunakan data nilai prediksi pada 20 user acak pada database aplikasi Sindomall pada bulan Desember 2021 didapatkan model optimal dengan nilai parameter presentase user sebesar 100%. Hasil dari pengujian error sistem menggunakan model terpilih mendapatkan nilai MAE dan RMSE masing-masing sebesar 0,006 dan 0,013, sedangkan pada tahap pengujian akurasi sistem didapatkan nilai akurasi sebesar 0,849, nilai presisi sebesar 0,923, nilai recall sebesar 0,869, dan nilai F-score (F1) sebesar 0,895.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":"116 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sistem Rekomendasi Produk Aplikasi Marketplace Berdasarkan Karakteristik Pembeli Menggunakan Metode User Based Collaborative Filtering\",\"authors\":\"Fajar Rohman Hariri, Lingga Wahyu Rochim\",\"doi\":\"10.34148/teknika.v11i3.538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sistem rekomendasi produk merupakan sebuah sistem yang dapat memberikan prediksi produk yang relevan terhadap perilaku atau karakteristik user, sehingga dapat mempengaruhi user dalam mengambil keputusan untuk membeli suatu produk. Penelitian ini dilakukan untuk dapat memberikan rekomendasi kepada pembeli pada aplikasi marketplace Sindomall dengan menggunakan metode User Based Collaborative Filtering dikolaborasikan dengan algoritma Improved Triangle Similarity Complemented with User Rating Preferences (ITR) untuk menghitung nilai similarity antar pembeli dan algoritma Weighted Sum untuk menghitung nilai prediksi produk. Karakteristik pembeli diambil dari data perilaku pembeli dalam memberikan rating pada produk. Dalam pengujian model yang dilakukan dengan menggunakan data nilai prediksi pada 20 user acak pada database aplikasi Sindomall pada bulan Desember 2021 didapatkan model optimal dengan nilai parameter presentase user sebesar 100%. Hasil dari pengujian error sistem menggunakan model terpilih mendapatkan nilai MAE dan RMSE masing-masing sebesar 0,006 dan 0,013, sedangkan pada tahap pengujian akurasi sistem didapatkan nilai akurasi sebesar 0,849, nilai presisi sebesar 0,923, nilai recall sebesar 0,869, dan nilai F-score (F1) sebesar 0,895.\",\"PeriodicalId\":52620,\"journal\":{\"name\":\"Teknika\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teknika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34148/teknika.v11i3.538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34148/teknika.v11i3.538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

产品推荐系统是一个可以对用户的行为或特征做出相关预测的系统,从而影响用户对产品的决策。本研究的目的是利用“用户过滤算法”与“可行的算法算法”(ITR)合作,以计算客户之间的相似值,并计算产品预测值”算法,为客户提供建议。买家的特征来自于买家在对产品进行评级时的行为数据。在测试模型时,使用20个随机值数据对Sindomall应用数据库中的20个随机值进行预测。使用所选模型进行的错误系统测试的结果分别为0.006和0.013,而在测试过程中,系统的准确性值分别为0.849,精度值为0.923,精度值为0.969,f得分值为0.895。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sistem Rekomendasi Produk Aplikasi Marketplace Berdasarkan Karakteristik Pembeli Menggunakan Metode User Based Collaborative Filtering
Sistem rekomendasi produk merupakan sebuah sistem yang dapat memberikan prediksi produk yang relevan terhadap perilaku atau karakteristik user, sehingga dapat mempengaruhi user dalam mengambil keputusan untuk membeli suatu produk. Penelitian ini dilakukan untuk dapat memberikan rekomendasi kepada pembeli pada aplikasi marketplace Sindomall dengan menggunakan metode User Based Collaborative Filtering dikolaborasikan dengan algoritma Improved Triangle Similarity Complemented with User Rating Preferences (ITR) untuk menghitung nilai similarity antar pembeli dan algoritma Weighted Sum untuk menghitung nilai prediksi produk. Karakteristik pembeli diambil dari data perilaku pembeli dalam memberikan rating pada produk. Dalam pengujian model yang dilakukan dengan menggunakan data nilai prediksi pada 20 user acak pada database aplikasi Sindomall pada bulan Desember 2021 didapatkan model optimal dengan nilai parameter presentase user sebesar 100%. Hasil dari pengujian error sistem menggunakan model terpilih mendapatkan nilai MAE dan RMSE masing-masing sebesar 0,006 dan 0,013, sedangkan pada tahap pengujian akurasi sistem didapatkan nilai akurasi sebesar 0,849, nilai presisi sebesar 0,923, nilai recall sebesar 0,869, dan nilai F-score (F1) sebesar 0,895.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
22
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信