Yun-En Liu, Travis Mandel, E. Brunskill, Zoran Popovic
{"title":"走向教育知识的自动实验","authors":"Yun-En Liu, Travis Mandel, E. Brunskill, Zoran Popovic","doi":"10.1145/2556288.2557392","DOIUrl":null,"url":null,"abstract":"We present a general automatic experimentation and hypothesis generation framework that utilizes a large set of users to explore the effects of different parts of an intervention parameter space on any objective function. We also incorporate importance sampling, allowing us to run these automatic experiments even if we cannot give out the exact intervention distributions that we want. To show the utility of this framework, we present an implementation in the domain of fractions and numberlines, using an online educational game as the source of players. Our system is able to automatically explore the parameter space and generate hypotheses about what types of numberlines lead to maximal short-term transfer; testing on a separate dataset shows the most promising hypotheses are valid. We briefly discuss our results in the context of the wider educational literature, showing that one of our results is not explained by current research on multiple fraction representations, thus proving our ability to generate potentially interesting hypotheses to test.","PeriodicalId":20599,"journal":{"name":"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Towards automatic experimentation of educational knowledge\",\"authors\":\"Yun-En Liu, Travis Mandel, E. Brunskill, Zoran Popovic\",\"doi\":\"10.1145/2556288.2557392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a general automatic experimentation and hypothesis generation framework that utilizes a large set of users to explore the effects of different parts of an intervention parameter space on any objective function. We also incorporate importance sampling, allowing us to run these automatic experiments even if we cannot give out the exact intervention distributions that we want. To show the utility of this framework, we present an implementation in the domain of fractions and numberlines, using an online educational game as the source of players. Our system is able to automatically explore the parameter space and generate hypotheses about what types of numberlines lead to maximal short-term transfer; testing on a separate dataset shows the most promising hypotheses are valid. We briefly discuss our results in the context of the wider educational literature, showing that one of our results is not explained by current research on multiple fraction representations, thus proving our ability to generate potentially interesting hypotheses to test.\",\"PeriodicalId\":20599,\"journal\":{\"name\":\"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2556288.2557392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2556288.2557392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards automatic experimentation of educational knowledge
We present a general automatic experimentation and hypothesis generation framework that utilizes a large set of users to explore the effects of different parts of an intervention parameter space on any objective function. We also incorporate importance sampling, allowing us to run these automatic experiments even if we cannot give out the exact intervention distributions that we want. To show the utility of this framework, we present an implementation in the domain of fractions and numberlines, using an online educational game as the source of players. Our system is able to automatically explore the parameter space and generate hypotheses about what types of numberlines lead to maximal short-term transfer; testing on a separate dataset shows the most promising hypotheses are valid. We briefly discuss our results in the context of the wider educational literature, showing that one of our results is not explained by current research on multiple fraction representations, thus proving our ability to generate potentially interesting hypotheses to test.