逆闵可夫斯基定理

O. Regev, Noah Stephens-Davidowitz
{"title":"逆闵可夫斯基定理","authors":"O. Regev, Noah Stephens-Davidowitz","doi":"10.1145/3055399.3055434","DOIUrl":null,"url":null,"abstract":"We prove a conjecture due to Dadush, showing that if ℒ⊂ ℝn is a lattice such that det(ℒ′) 1 for all sublattices ℒ′ ⊆ ℒ, then $$\\sum_{y∈ℒ}^e-t2||y||2≤3/2,$$ where t := 10(logn + 2). From this we also derive bounds on the number of short lattice vectors and on the covering radius.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A reverse Minkowski theorem\",\"authors\":\"O. Regev, Noah Stephens-Davidowitz\",\"doi\":\"10.1145/3055399.3055434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a conjecture due to Dadush, showing that if ℒ⊂ ℝn is a lattice such that det(ℒ′) 1 for all sublattices ℒ′ ⊆ ℒ, then $$\\\\sum_{y∈ℒ}^e-t2||y||2≤3/2,$$ where t := 10(logn + 2). From this we also derive bounds on the number of short lattice vectors and on the covering radius.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

我们证明了一个由Dadush引起的猜想,证明了如果∑∧∈n是一个格,使得所有子格∑∑∑都满足det(∑’)1,则$$\sum_{y∈ℒ}^e-t2||y||2≤3/2,$$,其中t:= 10(logn + 2)。由此我们还推导出了格短向量个数和覆盖半径的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reverse Minkowski theorem
We prove a conjecture due to Dadush, showing that if ℒ⊂ ℝn is a lattice such that det(ℒ′) 1 for all sublattices ℒ′ ⊆ ℒ, then $$\sum_{y∈ℒ}^e-t2||y||2≤3/2,$$ where t := 10(logn + 2). From this we also derive bounds on the number of short lattice vectors and on the covering radius.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信