三维矩阵代数的一类新的极值正映射

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
P. Lugiewicz, R. Olkiewicz
{"title":"三维矩阵代数的一类新的极值正映射","authors":"P. Lugiewicz, R. Olkiewicz","doi":"10.1142/s1230161221500098","DOIUrl":null,"url":null,"abstract":"We present a new one-parameter family of extremal positive maps on the three-dimensional matrix algebra. The new elements are characterized as mappings that preserve a one-dimensional orthogonal projector.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"107 1","pages":"2150009:1-2150009:11"},"PeriodicalIF":1.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a New Family of Extremal Positive Maps of Three-Dimensional Matrix Algebra\",\"authors\":\"P. Lugiewicz, R. Olkiewicz\",\"doi\":\"10.1142/s1230161221500098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new one-parameter family of extremal positive maps on the three-dimensional matrix algebra. The new elements are characterized as mappings that preserve a one-dimensional orthogonal projector.\",\"PeriodicalId\":54681,\"journal\":{\"name\":\"Open Systems & Information Dynamics\",\"volume\":\"107 1\",\"pages\":\"2150009:1-2150009:11\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Systems & Information Dynamics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s1230161221500098\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s1230161221500098","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

在三维矩阵代数上给出了一种新的单参数极值正映射族。新元素的特征是保持一维正交投影的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a New Family of Extremal Positive Maps of Three-Dimensional Matrix Algebra
We present a new one-parameter family of extremal positive maps on the three-dimensional matrix algebra. The new elements are characterized as mappings that preserve a one-dimensional orthogonal projector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Systems & Information Dynamics
Open Systems & Information Dynamics 工程技术-计算机:信息系统
CiteScore
1.40
自引率
12.50%
发文量
4
审稿时长
>12 weeks
期刊介绍: The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信