使用大型复杂样本的最佳实践:使用适当权重和设计效果补偿的重要性。

Q2 Social Sciences
J. Osborne
{"title":"使用大型复杂样本的最佳实践:使用适当权重和设计效果补偿的重要性。","authors":"J. Osborne","doi":"10.7275/2KYG-M659","DOIUrl":null,"url":null,"abstract":"Large surveys often use probability sampling in order to obtain representative samples, and these data sets are valuable tools for researchers in all areas of science. Yet many researchers are not formally prepared to appropriately utilize these resources. Indeed, users of one popular dataset were generally found not to have modeled the analyses to take account of the complex sample (Johnson & Elliott, 1998) even when publishing in highly-regarded journals. It is well known that failure to appropriately model the complex sample can substantially bias the results of the analysis. Examples presented in this paper highlight the risk of error of inference and mis-estimation of parameters from failure to analyze these data sets appropriately.","PeriodicalId":20361,"journal":{"name":"Practical Assessment, Research and Evaluation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Best Practices in Using Large, Complex Samples: The Importance of Using Appropriate Weights and Design Effect Compensation.\",\"authors\":\"J. Osborne\",\"doi\":\"10.7275/2KYG-M659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large surveys often use probability sampling in order to obtain representative samples, and these data sets are valuable tools for researchers in all areas of science. Yet many researchers are not formally prepared to appropriately utilize these resources. Indeed, users of one popular dataset were generally found not to have modeled the analyses to take account of the complex sample (Johnson & Elliott, 1998) even when publishing in highly-regarded journals. It is well known that failure to appropriately model the complex sample can substantially bias the results of the analysis. Examples presented in this paper highlight the risk of error of inference and mis-estimation of parameters from failure to analyze these data sets appropriately.\",\"PeriodicalId\":20361,\"journal\":{\"name\":\"Practical Assessment, Research and Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Practical Assessment, Research and Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7275/2KYG-M659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Assessment, Research and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7275/2KYG-M659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 30

摘要

大型调查通常使用概率抽样来获得代表性样本,这些数据集对所有科学领域的研究人员来说都是有价值的工具。然而,许多研究人员还没有正式准备好适当地利用这些资源。事实上,一个流行数据集的用户通常被发现没有建模分析,以考虑复杂的样本(Johnson & Elliott, 1998),即使在高声望的期刊上发表。众所周知,对复杂样品进行适当建模的失败会大大影响分析结果。文中给出的例子强调了由于不能适当地分析这些数据集而导致的推理错误和参数错误估计的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Best Practices in Using Large, Complex Samples: The Importance of Using Appropriate Weights and Design Effect Compensation.
Large surveys often use probability sampling in order to obtain representative samples, and these data sets are valuable tools for researchers in all areas of science. Yet many researchers are not formally prepared to appropriately utilize these resources. Indeed, users of one popular dataset were generally found not to have modeled the analyses to take account of the complex sample (Johnson & Elliott, 1998) even when publishing in highly-regarded journals. It is well known that failure to appropriately model the complex sample can substantially bias the results of the analysis. Examples presented in this paper highlight the risk of error of inference and mis-estimation of parameters from failure to analyze these data sets appropriately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信