非线性中立型卡普分数差分方程及其在lotka-volterra中立型模型中的应用

IF 0.5 Q3 MATHEMATICS
M. Mesmouli, A. Ardjouni, A. Djoudi
{"title":"非线性中立型卡普分数差分方程及其在lotka-volterra中立型模型中的应用","authors":"M. Mesmouli, A. Ardjouni, A. Djoudi","doi":"10.22190/FUMI2005475M","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a nonlinear neutral fractional difference equations. By applying Krasnoselskii's fixed point theorem, sufficient conditions for the existence of solutions are established, also the uniqueness of solutions is given. As an application of the main theorems, we provide the existence and uniqueness of the discrete fractional Lotka-Volterra model of neutral type. Our main results extend and generalize the results that are obtained in Azabut.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"12 4 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NONLINEAR NEUTRAL CAPUTO-FRACTIONAL DIFFERENCE EQUATIONS WITH APPLICATIONS TO LOTKA-VOLTERRA NEUTRAL MODEL\",\"authors\":\"M. Mesmouli, A. Ardjouni, A. Djoudi\",\"doi\":\"10.22190/FUMI2005475M\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a nonlinear neutral fractional difference equations. By applying Krasnoselskii's fixed point theorem, sufficient conditions for the existence of solutions are established, also the uniqueness of solutions is given. As an application of the main theorems, we provide the existence and uniqueness of the discrete fractional Lotka-Volterra model of neutral type. Our main results extend and generalize the results that are obtained in Azabut.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"12 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/FUMI2005475M\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUMI2005475M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑一类非线性中立型分数阶差分方程。应用Krasnoselskii不动点定理,建立了解存在的充分条件,并给出了解的唯一性。作为主要定理的应用,我们给出了中立型离散分数型Lotka-Volterra模型的存在唯一性。我们的主要结果推广和推广了在Azabut得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NONLINEAR NEUTRAL CAPUTO-FRACTIONAL DIFFERENCE EQUATIONS WITH APPLICATIONS TO LOTKA-VOLTERRA NEUTRAL MODEL
In this paper, we consider a nonlinear neutral fractional difference equations. By applying Krasnoselskii's fixed point theorem, sufficient conditions for the existence of solutions are established, also the uniqueness of solutions is given. As an application of the main theorems, we provide the existence and uniqueness of the discrete fractional Lotka-Volterra model of neutral type. Our main results extend and generalize the results that are obtained in Azabut.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信