在内存中,高速流处理

Rohit Gupta, Rinku Shah, Apurva Mhetre
{"title":"在内存中,高速流处理","authors":"Rohit Gupta, Rinku Shah, Apurva Mhetre","doi":"10.1145/2611286.2611332","DOIUrl":null,"url":null,"abstract":"To enable load prediction we require three ingredients; Data acquisition, Accurate prediction algorithms and timely prediction. This work is focused on the third ingredient i.e. Timely prediction. Timely prediction is required for proper functioning of smart grid. Towards this we offer a scalable, distributed and incremental solution.\n We present a solution that utilise multiple techniques to evade performance degradation maintaining timing requirements. These techniques include:(1) Splitting the nested processing into stages to maintain high throughput. (2) Customised median finding algorithms to generate timely output from high volume data. (3) Pre-fetching to eliminate disk access time for accessing the historical data. Implementing these together, our technique is able to perform 11K predictions per sec, and 2.5K outlier computations per sec.","PeriodicalId":92123,"journal":{"name":"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems","volume":"6 1","pages":"306-309"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In-memory, high speed stream processing\",\"authors\":\"Rohit Gupta, Rinku Shah, Apurva Mhetre\",\"doi\":\"10.1145/2611286.2611332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enable load prediction we require three ingredients; Data acquisition, Accurate prediction algorithms and timely prediction. This work is focused on the third ingredient i.e. Timely prediction. Timely prediction is required for proper functioning of smart grid. Towards this we offer a scalable, distributed and incremental solution.\\n We present a solution that utilise multiple techniques to evade performance degradation maintaining timing requirements. These techniques include:(1) Splitting the nested processing into stages to maintain high throughput. (2) Customised median finding algorithms to generate timely output from high volume data. (3) Pre-fetching to eliminate disk access time for accessing the historical data. Implementing these together, our technique is able to perform 11K predictions per sec, and 2.5K outlier computations per sec.\",\"PeriodicalId\":92123,\"journal\":{\"name\":\"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems\",\"volume\":\"6 1\",\"pages\":\"306-309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611286.2611332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611286.2611332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了实现负荷预测,我们需要三个要素;数据采集,预测算法准确,预测及时。这项工作的重点是第三个要素,即及时预测。智能电网的正常运行需要及时的预测。为此,我们提供了一个可扩展的、分布式的、增量的解决方案。我们提出了一种解决方案,利用多种技术来避免性能下降,保持定时要求。这些技术包括:(1)将嵌套处理分成几个阶段,以保持高吞吐量。(2)定制中值查找算法,从海量数据中及时生成输出。(3)预取,消除访问历史数据的磁盘访问时间。将它们一起实现,我们的技术能够每秒执行11K个预测,每秒执行2.5K个离群值计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-memory, high speed stream processing
To enable load prediction we require three ingredients; Data acquisition, Accurate prediction algorithms and timely prediction. This work is focused on the third ingredient i.e. Timely prediction. Timely prediction is required for proper functioning of smart grid. Towards this we offer a scalable, distributed and incremental solution. We present a solution that utilise multiple techniques to evade performance degradation maintaining timing requirements. These techniques include:(1) Splitting the nested processing into stages to maintain high throughput. (2) Customised median finding algorithms to generate timely output from high volume data. (3) Pre-fetching to eliminate disk access time for accessing the historical data. Implementing these together, our technique is able to perform 11K predictions per sec, and 2.5K outlier computations per sec.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信