{"title":"通过跟踪视频中的面部特征点来非接触式测量肌肉疲劳","authors":"Ramin Irani, Kamal Nasrollahi, T. Moeslund","doi":"10.1109/ICIP.2014.7025849","DOIUrl":null,"url":null,"abstract":"Physical exercise may result in muscle tiredness which is known as muscle fatigue. This occurs when the muscles cannot exert normal force, or when more than normal effort is required. Fatigue is a vital sign, for example, for therapists to assess their patient's progress or to change their exercises when the level of the fatigue might be dangerous for the patients. The current technology for measuring tiredness, like Electromyography (EMG), requires installing some sensors on the body. In some applications, like remote patient monitoring, this however might not be possible. To deal with such cases, in this paper we present a contactless method based on computer vision techniques to measure tiredness by detecting, tracking, and analyzing some facial feature points during the exercise. Experimental results on several test subjects and comparing them against ground truth data show that the proposed system can properly find the temporal point of tiredness of the muscles when the test subjects are doing physical exercises.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Contactless measurement of muscles fatigue by tracking facial feature points in a video\",\"authors\":\"Ramin Irani, Kamal Nasrollahi, T. Moeslund\",\"doi\":\"10.1109/ICIP.2014.7025849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical exercise may result in muscle tiredness which is known as muscle fatigue. This occurs when the muscles cannot exert normal force, or when more than normal effort is required. Fatigue is a vital sign, for example, for therapists to assess their patient's progress or to change their exercises when the level of the fatigue might be dangerous for the patients. The current technology for measuring tiredness, like Electromyography (EMG), requires installing some sensors on the body. In some applications, like remote patient monitoring, this however might not be possible. To deal with such cases, in this paper we present a contactless method based on computer vision techniques to measure tiredness by detecting, tracking, and analyzing some facial feature points during the exercise. Experimental results on several test subjects and comparing them against ground truth data show that the proposed system can properly find the temporal point of tiredness of the muscles when the test subjects are doing physical exercises.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contactless measurement of muscles fatigue by tracking facial feature points in a video
Physical exercise may result in muscle tiredness which is known as muscle fatigue. This occurs when the muscles cannot exert normal force, or when more than normal effort is required. Fatigue is a vital sign, for example, for therapists to assess their patient's progress or to change their exercises when the level of the fatigue might be dangerous for the patients. The current technology for measuring tiredness, like Electromyography (EMG), requires installing some sensors on the body. In some applications, like remote patient monitoring, this however might not be possible. To deal with such cases, in this paper we present a contactless method based on computer vision techniques to measure tiredness by detecting, tracking, and analyzing some facial feature points during the exercise. Experimental results on several test subjects and comparing them against ground truth data show that the proposed system can properly find the temporal point of tiredness of the muscles when the test subjects are doing physical exercises.