具有共同支持的稀疏mimo系统的盲估计和低速率采样

Ying Xiong, Yue M. Lu
{"title":"具有共同支持的稀疏mimo系统的盲估计和低速率采样","authors":"Ying Xiong, Yue M. Lu","doi":"10.1109/ICASSP.2012.6288768","DOIUrl":null,"url":null,"abstract":"We present a blind estimation algorithm for multi-input and multi-output (MIMO) systems with sparse common support. Key to the proposed algorithm is a matrix generalization of the classical annihilating filter technique, which allows us to estimate the nonlinear parameters of the channels through an efficient and noniterative procedure. An attractive property of the proposed algorithm is that it only needs the sensor measurements at a narrow frequency band. By exploiting this feature, we can derive efficient sub-Nyquist sampling schemes which significantly reduce the number of samples that need to be retained at each sensor. Numerical simulations verify the accuracy of the proposed estimation algorithm and its robustness in the presence of noise.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Blind estimation and low-rate sampling of sparse mimo systems with common support\",\"authors\":\"Ying Xiong, Yue M. Lu\",\"doi\":\"10.1109/ICASSP.2012.6288768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a blind estimation algorithm for multi-input and multi-output (MIMO) systems with sparse common support. Key to the proposed algorithm is a matrix generalization of the classical annihilating filter technique, which allows us to estimate the nonlinear parameters of the channels through an efficient and noniterative procedure. An attractive property of the proposed algorithm is that it only needs the sensor measurements at a narrow frequency band. By exploiting this feature, we can derive efficient sub-Nyquist sampling schemes which significantly reduce the number of samples that need to be retained at each sensor. Numerical simulations verify the accuracy of the proposed estimation algorithm and its robustness in the presence of noise.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于稀疏公共支持的多输入多输出(MIMO)系统盲估计算法。该算法的关键是对经典湮灭滤波技术的矩阵推广,使我们能够通过有效的非迭代过程估计信道的非线性参数。该算法的一个吸引人的特点是它只需要在较窄的频带进行传感器测量。通过利用这一特征,我们可以推导出有效的亚奈奎斯特采样方案,该方案显著减少了每个传感器需要保留的样本数量。数值仿真验证了所提估计算法的准确性和在噪声存在下的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind estimation and low-rate sampling of sparse mimo systems with common support
We present a blind estimation algorithm for multi-input and multi-output (MIMO) systems with sparse common support. Key to the proposed algorithm is a matrix generalization of the classical annihilating filter technique, which allows us to estimate the nonlinear parameters of the channels through an efficient and noniterative procedure. An attractive property of the proposed algorithm is that it only needs the sensor measurements at a narrow frequency band. By exploiting this feature, we can derive efficient sub-Nyquist sampling schemes which significantly reduce the number of samples that need to be retained at each sensor. Numerical simulations verify the accuracy of the proposed estimation algorithm and its robustness in the presence of noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信