通过数据驱动方法和基于互联车辆的微观模拟进行积极的拥堵管理

IF 2.8 3区 工程技术 Q3 TRANSPORTATION
{"title":"通过数据驱动方法和基于互联车辆的微观模拟进行积极的拥堵管理","authors":"","doi":"10.1080/15472450.2022.2140047","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic congestion is a phenomenon that has been extensively explored by researchers due to its impact on reliability and safety. This research is focused on proactively detecting and mitigating congestion on freeways by fuzing conventional traffic data obtained from radar and loop detectors with newer sources, such as Bluetooth and connected vehicles (CV). Data-driven and signal-processing techniques are explored to develop algorithms that use near- or real-time traffic measurements to predict the onset and intensity level of traffic congestion. The developed algorithm can be applied to both conventional and low penetration CV-based datasets to identify four types of congestion, that is, normal, recurring, other non-recurring, and incident. This research also demonstrates the advantage of using CV-based travel time estimates to calibrate microsimulation models over fixed point-based derivations of travel time from spot speeds. Finally, a set of mitigation strategies consisting of speed harmonization and dynamic rerouting are implemented in the calibrated simulation network to demonstrate their effectiveness in proactively reducing recurring and non-recurring congestion. The final derived algorithm is effective in proactively predicting the onset of congestion and its intensity level, with an overall mean prediction error of 30.2%. A limitation to the algorithm’s methodology is that it cannot disentangle the type of congestion when two or more are occurring simultaneously and only predicts/classifies the anticipated highest level. However, this does not impair the user’s ability to readily deploy appropriate mitigation strategies to alleviate the predicted intensity of congestion.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 4","pages":"Pages 459-475"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proactive congestion management via data-driven methods and connected vehicle-based microsimulation\",\"authors\":\"\",\"doi\":\"10.1080/15472450.2022.2140047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traffic congestion is a phenomenon that has been extensively explored by researchers due to its impact on reliability and safety. This research is focused on proactively detecting and mitigating congestion on freeways by fuzing conventional traffic data obtained from radar and loop detectors with newer sources, such as Bluetooth and connected vehicles (CV). Data-driven and signal-processing techniques are explored to develop algorithms that use near- or real-time traffic measurements to predict the onset and intensity level of traffic congestion. The developed algorithm can be applied to both conventional and low penetration CV-based datasets to identify four types of congestion, that is, normal, recurring, other non-recurring, and incident. This research also demonstrates the advantage of using CV-based travel time estimates to calibrate microsimulation models over fixed point-based derivations of travel time from spot speeds. Finally, a set of mitigation strategies consisting of speed harmonization and dynamic rerouting are implemented in the calibrated simulation network to demonstrate their effectiveness in proactively reducing recurring and non-recurring congestion. The final derived algorithm is effective in proactively predicting the onset of congestion and its intensity level, with an overall mean prediction error of 30.2%. A limitation to the algorithm’s methodology is that it cannot disentangle the type of congestion when two or more are occurring simultaneously and only predicts/classifies the anticipated highest level. However, this does not impair the user’s ability to readily deploy appropriate mitigation strategies to alleviate the predicted intensity of congestion.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"28 4\",\"pages\":\"Pages 459-475\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245023000282\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000282","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

由于交通拥堵对可靠性和安全性的影响,研究人员对这一现象进行了广泛的探讨。本研究的重点是通过将从雷达和环路探测器获得的传统交通数据与蓝牙和联网车辆(CV)等新数据源融合,主动检测和缓解高速公路上的拥堵现象。我们探索了数据驱动和信号处理技术,以开发使用近距离或实时交通测量来预测交通拥堵开始和严重程度的算法。所开发的算法可应用于基于 CV 的传统数据集和低渗透率数据集,以识别四种拥堵类型,即正常拥堵、经常性拥堵、其他非经常性拥堵和事故拥堵。这项研究还证明了使用基于 CV 的旅行时间估算来校准微观模拟模型的优势,而不是根据定点速度推导旅行时间。最后,在校准后的模拟网络中实施了一套由速度协调和动态改道组成的缓解策略,以证明其在主动减少经常性和非经常性拥堵方面的有效性。最终得出的算法能有效地主动预测拥堵的发生及其强度,总体平均预测误差为 30.2%。该算法方法的一个局限是,当同时发生两种或两种以上拥堵时,它无法区分拥堵类型,只能预测/分类预计的最高级别。不过,这并不影响用户随时部署适当的缓解策略,以减轻预测的拥堵强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proactive congestion management via data-driven methods and connected vehicle-based microsimulation

Traffic congestion is a phenomenon that has been extensively explored by researchers due to its impact on reliability and safety. This research is focused on proactively detecting and mitigating congestion on freeways by fuzing conventional traffic data obtained from radar and loop detectors with newer sources, such as Bluetooth and connected vehicles (CV). Data-driven and signal-processing techniques are explored to develop algorithms that use near- or real-time traffic measurements to predict the onset and intensity level of traffic congestion. The developed algorithm can be applied to both conventional and low penetration CV-based datasets to identify four types of congestion, that is, normal, recurring, other non-recurring, and incident. This research also demonstrates the advantage of using CV-based travel time estimates to calibrate microsimulation models over fixed point-based derivations of travel time from spot speeds. Finally, a set of mitigation strategies consisting of speed harmonization and dynamic rerouting are implemented in the calibrated simulation network to demonstrate their effectiveness in proactively reducing recurring and non-recurring congestion. The final derived algorithm is effective in proactively predicting the onset of congestion and its intensity level, with an overall mean prediction error of 30.2%. A limitation to the algorithm’s methodology is that it cannot disentangle the type of congestion when two or more are occurring simultaneously and only predicts/classifies the anticipated highest level. However, this does not impair the user’s ability to readily deploy appropriate mitigation strategies to alleviate the predicted intensity of congestion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信