{"title":"拟静力地震主动荷载作用下挡土墙支撑c-Î充填体的滑动稳定性","authors":"Sima Ghosh","doi":"10.4018/JGEE.2013010101","DOIUrl":null,"url":null,"abstract":"The sliding stability of retaining wall is one of the four important stability criteria for the safe design of retaining wall. Here an attempt is made to determine the sliding stability of retaining wall under seismic loading condition supporting c- F backfill considering both soil and wall inertia using pseudo-static method. The analysis for seismic active earth pressure for that particular study is done in such a way to develop a single critical wedge surface which is more realistic. The effect of wide range of variation of parameters like angle of internal friction of soil, angle of wall friction, cohesion, adhesion, seismic acceleration are studied on normalized seismic active earth pressure variation, wall inertia factor, thrust factor, combined dynamic factor and dynamic factor of safety against sliding. Results are presented in terms of formula for critical wedge surface and seismic active earth pressure and non-dimensional charts for the variation of different factors. Finally, a failure zone against sliding is recommended in the Factor of safety against sliding charts.","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"80 1","pages":"1-16"},"PeriodicalIF":0.5000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding Stability of Retaining Wall Supporting c-Φ Backfill under Pseudo-Statically Seismic Active Load\",\"authors\":\"Sima Ghosh\",\"doi\":\"10.4018/JGEE.2013010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sliding stability of retaining wall is one of the four important stability criteria for the safe design of retaining wall. Here an attempt is made to determine the sliding stability of retaining wall under seismic loading condition supporting c- F backfill considering both soil and wall inertia using pseudo-static method. The analysis for seismic active earth pressure for that particular study is done in such a way to develop a single critical wedge surface which is more realistic. The effect of wide range of variation of parameters like angle of internal friction of soil, angle of wall friction, cohesion, adhesion, seismic acceleration are studied on normalized seismic active earth pressure variation, wall inertia factor, thrust factor, combined dynamic factor and dynamic factor of safety against sliding. Results are presented in terms of formula for critical wedge surface and seismic active earth pressure and non-dimensional charts for the variation of different factors. Finally, a failure zone against sliding is recommended in the Factor of safety against sliding charts.\",\"PeriodicalId\":42473,\"journal\":{\"name\":\"International Journal of Geotechnical Earthquake Engineering\",\"volume\":\"80 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geotechnical Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/JGEE.2013010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/JGEE.2013010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Sliding Stability of Retaining Wall Supporting c-Φ Backfill under Pseudo-Statically Seismic Active Load
The sliding stability of retaining wall is one of the four important stability criteria for the safe design of retaining wall. Here an attempt is made to determine the sliding stability of retaining wall under seismic loading condition supporting c- F backfill considering both soil and wall inertia using pseudo-static method. The analysis for seismic active earth pressure for that particular study is done in such a way to develop a single critical wedge surface which is more realistic. The effect of wide range of variation of parameters like angle of internal friction of soil, angle of wall friction, cohesion, adhesion, seismic acceleration are studied on normalized seismic active earth pressure variation, wall inertia factor, thrust factor, combined dynamic factor and dynamic factor of safety against sliding. Results are presented in terms of formula for critical wedge surface and seismic active earth pressure and non-dimensional charts for the variation of different factors. Finally, a failure zone against sliding is recommended in the Factor of safety against sliding charts.