W. Cheng, G. Kim, A. W. Peters, X. Zhao, K. Rajagopalan, M. Ziebarth, C. Pereira
{"title":"环境流体催化裂化技术","authors":"W. Cheng, G. Kim, A. W. Peters, X. Zhao, K. Rajagopalan, M. Ziebarth, C. Pereira","doi":"10.1080/01614949808007105","DOIUrl":null,"url":null,"abstract":"The fluid catalytic cracking (FCC) process converts heavy oil into voluable fuel products and petrochemical feedstocks. Environmental regulations are a key driving force for reducing FCC process ai...","PeriodicalId":50986,"journal":{"name":"Catalysis Reviews-Science and Engineering","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"1998-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Environmental Fluid Catalytic Cracking Technology\",\"authors\":\"W. Cheng, G. Kim, A. W. Peters, X. Zhao, K. Rajagopalan, M. Ziebarth, C. Pereira\",\"doi\":\"10.1080/01614949808007105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fluid catalytic cracking (FCC) process converts heavy oil into voluable fuel products and petrochemical feedstocks. Environmental regulations are a key driving force for reducing FCC process ai...\",\"PeriodicalId\":50986,\"journal\":{\"name\":\"Catalysis Reviews-Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"1998-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Reviews-Science and Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/01614949808007105\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews-Science and Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/01614949808007105","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The fluid catalytic cracking (FCC) process converts heavy oil into voluable fuel products and petrochemical feedstocks. Environmental regulations are a key driving force for reducing FCC process ai...
期刊介绍:
Catalysis Reviews is dedicated to fostering interdisciplinary perspectives in catalytic science and engineering, catering to a global audience of industrial and academic researchers. This journal serves as a bridge between the realms of heterogeneous, homogeneous, and bio-catalysis, providing a crucial and critical evaluation of the current state of catalytic science and engineering. Published topics encompass advances in technology and theory, engineering and chemical aspects of catalytic reactions, reactor design, computer models, analytical tools, and statistical evaluations.