Jonathan Ben-Artzi, Baptiste Morisse, S. Pankavich
{"title":"二维对称等离子体的渐近生长和衰减","authors":"Jonathan Ben-Artzi, Baptiste Morisse, S. Pankavich","doi":"10.3934/krm.2023015","DOIUrl":null,"url":null,"abstract":"We study the large time behavior of classical solutions to the two-dimensional Vlasov-Poisson (VP) and relativistic Vlasov-Poisson (RVP) systems launched by radially-symmetric initial data with compact support. In particular, we prove that particle positions and momenta grow unbounded as $t \\to \\infty$ and obtain sharp rates on the maximal values of these quantities on the support of the distribution function for each system. Furthermore, we establish nearly sharp rates of decay for the associated electric field, as well as upper and lower bounds on the decay rate of the charge density in the large time limit. We prove that, unlike (VP) in higher dimensions, smooth solutions do not scatter to their free-streaming profiles as $t \\to \\infty$ because nonlinear, long-range field interactions dominate the behavior of characteristics due to the exchange of energy from the potential to the kinetic term. In this way, the system may\"forget\"any previous configuration of particles.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic growth and decay of two-dimensional symmetric plasmas\",\"authors\":\"Jonathan Ben-Artzi, Baptiste Morisse, S. Pankavich\",\"doi\":\"10.3934/krm.2023015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the large time behavior of classical solutions to the two-dimensional Vlasov-Poisson (VP) and relativistic Vlasov-Poisson (RVP) systems launched by radially-symmetric initial data with compact support. In particular, we prove that particle positions and momenta grow unbounded as $t \\\\to \\\\infty$ and obtain sharp rates on the maximal values of these quantities on the support of the distribution function for each system. Furthermore, we establish nearly sharp rates of decay for the associated electric field, as well as upper and lower bounds on the decay rate of the charge density in the large time limit. We prove that, unlike (VP) in higher dimensions, smooth solutions do not scatter to their free-streaming profiles as $t \\\\to \\\\infty$ because nonlinear, long-range field interactions dominate the behavior of characteristics due to the exchange of energy from the potential to the kinetic term. In this way, the system may\\\"forget\\\"any previous configuration of particles.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2023015\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2023015","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Asymptotic growth and decay of two-dimensional symmetric plasmas
We study the large time behavior of classical solutions to the two-dimensional Vlasov-Poisson (VP) and relativistic Vlasov-Poisson (RVP) systems launched by radially-symmetric initial data with compact support. In particular, we prove that particle positions and momenta grow unbounded as $t \to \infty$ and obtain sharp rates on the maximal values of these quantities on the support of the distribution function for each system. Furthermore, we establish nearly sharp rates of decay for the associated electric field, as well as upper and lower bounds on the decay rate of the charge density in the large time limit. We prove that, unlike (VP) in higher dimensions, smooth solutions do not scatter to their free-streaming profiles as $t \to \infty$ because nonlinear, long-range field interactions dominate the behavior of characteristics due to the exchange of energy from the potential to the kinetic term. In this way, the system may"forget"any previous configuration of particles.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.