量子最优控制的瞬时稳定性和鲁棒性研究:线性偶极子和二次控制代理下的谐振子

Metin Demiralp, Burcu Tunga
{"title":"量子最优控制的瞬时稳定性和鲁棒性研究:线性偶极子和二次控制代理下的谐振子","authors":"Metin Demiralp,&nbsp;Burcu Tunga","doi":"10.1002/anac.200410023","DOIUrl":null,"url":null,"abstract":"<p>In this work we have investigated the stability and robustness of the optimal control solutions to a quantum system when the control duration goes to zero. The solutions at this limit are called “Instantaneous Solutions”. These investigations are based on the second variation of the cost functional evaluated at control solution values when the first variations of wave and costate functions are related to the first variation of external field amplitude via control equations. This form of cost functional's second variation is purely quadratic in the first variation of the external field amplitude. Investigations are conducted for an illustrative model system, one dimensional quantum harmonic oscillator under linear dipole interaction, purely quadratic objective operator in position, and purely quadratic penalty operator in momentum. We have not found the stability operator's spectrum explicitly. Instead we have employed a bound analysis to understand the system's stability and robustness. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"2 1","pages":"60-69"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410023","citationCount":"2","resultStr":"{\"title\":\"Instantaneous Stability and Robustness Investigations in Quantum Optimal Control: Harmonic Oscillator Under Linear Dipole and Quadratic Control Agents\",\"authors\":\"Metin Demiralp,&nbsp;Burcu Tunga\",\"doi\":\"10.1002/anac.200410023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work we have investigated the stability and robustness of the optimal control solutions to a quantum system when the control duration goes to zero. The solutions at this limit are called “Instantaneous Solutions”. These investigations are based on the second variation of the cost functional evaluated at control solution values when the first variations of wave and costate functions are related to the first variation of external field amplitude via control equations. This form of cost functional's second variation is purely quadratic in the first variation of the external field amplitude. Investigations are conducted for an illustrative model system, one dimensional quantum harmonic oscillator under linear dipole interaction, purely quadratic objective operator in position, and purely quadratic penalty operator in momentum. We have not found the stability operator's spectrum explicitly. Instead we have employed a bound analysis to understand the system's stability and robustness. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"2 1\",\"pages\":\"60-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200410023\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们研究了当控制持续时间趋于零时,量子系统最优控制解的稳定性和鲁棒性。在这个极限处的解称为“瞬时解”。当波和协态函数的第一次变化通过控制方程与外场振幅的第一次变化相关时,这些研究是基于在控制解值处评估的成本函数的第二次变化。这种形式的代价泛函的第二次变化在外场振幅的第一次变化中是纯二次的。研究了线性偶极相互作用下的一维量子谐振子、位置上的纯二次目标算符和动量上的纯二次惩罚算符。我们还没有明确地找到稳定性算符的谱。相反,我们采用了界分析来理解系统的稳定性和鲁棒性。(©2005 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instantaneous Stability and Robustness Investigations in Quantum Optimal Control: Harmonic Oscillator Under Linear Dipole and Quadratic Control Agents

In this work we have investigated the stability and robustness of the optimal control solutions to a quantum system when the control duration goes to zero. The solutions at this limit are called “Instantaneous Solutions”. These investigations are based on the second variation of the cost functional evaluated at control solution values when the first variations of wave and costate functions are related to the first variation of external field amplitude via control equations. This form of cost functional's second variation is purely quadratic in the first variation of the external field amplitude. Investigations are conducted for an illustrative model system, one dimensional quantum harmonic oscillator under linear dipole interaction, purely quadratic objective operator in position, and purely quadratic penalty operator in momentum. We have not found the stability operator's spectrum explicitly. Instead we have employed a bound analysis to understand the system's stability and robustness. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信