外域上退化双曲不等式的一般爆破结果

IF 1.1 2区 数学 Q1 MATHEMATICS
M. Jleli, M. Kirane, B. Samet
{"title":"外域上退化双曲不等式的一般爆破结果","authors":"M. Jleli, M. Kirane, B. Samet","doi":"10.1142/s1664360721500120","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a degenerate hyperbolic inequality in an exterior domain under three types of boundary conditions: Dirichlet-type, Neumann-type, and Robin-type boundary conditions. Using a unified approach, we show that all the considered problems have the same Fujita critical exponent. Moreover, we answer some open questions from the literature regarding the critical case.","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":"113 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A general blow-up result for a degenerate hyperbolic inequality in an exterior domain\",\"authors\":\"M. Jleli, M. Kirane, B. Samet\",\"doi\":\"10.1142/s1664360721500120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a degenerate hyperbolic inequality in an exterior domain under three types of boundary conditions: Dirichlet-type, Neumann-type, and Robin-type boundary conditions. Using a unified approach, we show that all the considered problems have the same Fujita critical exponent. Moreover, we answer some open questions from the literature regarding the critical case.\",\"PeriodicalId\":9348,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1664360721500120\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1664360721500120","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在dirichlet型、neumann型和robin型三种边界条件下,我们考虑了外域上的退化双曲不等式。使用统一的方法,我们证明了所有考虑的问题都具有相同的藤田临界指数。此外,我们从文献中回答了一些关于临界情况的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general blow-up result for a degenerate hyperbolic inequality in an exterior domain
In this paper, we consider a degenerate hyperbolic inequality in an exterior domain under three types of boundary conditions: Dirichlet-type, Neumann-type, and Robin-type boundary conditions. Using a unified approach, we show that all the considered problems have the same Fujita critical exponent. Moreover, we answer some open questions from the literature regarding the critical case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
17
审稿时长
13 weeks
期刊介绍: The Bulletin of Mathematical Sciences, a peer-reviewed, open access journal, will publish original research work of highest quality and of broad interest in all branches of mathematical sciences. The Bulletin will publish well-written expository articles (40-50 pages) of exceptional value giving the latest state of the art on a specific topic, and short articles (up to 15 pages) containing significant results of wider interest. Most of the expository articles will be invited. The Bulletin of Mathematical Sciences is launched by King Abdulaziz University, Jeddah, Saudi Arabia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信