{"title":"欧洲x射线自由电子激光器波动器上与梁变形相关的相位误差","authors":"Yuhui Li, B. Ketenoglu, J. Pflueger","doi":"10.1103/PHYSREVSTAB.18.060704","DOIUrl":null,"url":null,"abstract":"In long gap tunable undulators, strong magnetic forces always lead to some amount of gap-dependent girder deformation and resulting gap-dependent phase errors. For the undulators for the European XFEL, this problem has been investigated thoroughly and quantitatively. Using the different gap dependencies of suitable shims and pole height tuning, a method is presented which can be applied to reduce the overall gap dependence of the phase error if needed. It is exemplified by tuning one of the undulator segments for the European X-Ray Free Electron Laser back to specs.","PeriodicalId":20072,"journal":{"name":"Physical Review Special Topics-accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Girder deformation related phase errors on the undulators for the European X-Ray Free Electron Laser\",\"authors\":\"Yuhui Li, B. Ketenoglu, J. Pflueger\",\"doi\":\"10.1103/PHYSREVSTAB.18.060704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In long gap tunable undulators, strong magnetic forces always lead to some amount of gap-dependent girder deformation and resulting gap-dependent phase errors. For the undulators for the European XFEL, this problem has been investigated thoroughly and quantitatively. Using the different gap dependencies of suitable shims and pole height tuning, a method is presented which can be applied to reduce the overall gap dependence of the phase error if needed. It is exemplified by tuning one of the undulator segments for the European X-Ray Free Electron Laser back to specs.\",\"PeriodicalId\":20072,\"journal\":{\"name\":\"Physical Review Special Topics-accelerators and Beams\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Special Topics-accelerators and Beams\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVSTAB.18.060704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Special Topics-accelerators and Beams","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVSTAB.18.060704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Girder deformation related phase errors on the undulators for the European X-Ray Free Electron Laser
In long gap tunable undulators, strong magnetic forces always lead to some amount of gap-dependent girder deformation and resulting gap-dependent phase errors. For the undulators for the European XFEL, this problem has been investigated thoroughly and quantitatively. Using the different gap dependencies of suitable shims and pole height tuning, a method is presented which can be applied to reduce the overall gap dependence of the phase error if needed. It is exemplified by tuning one of the undulator segments for the European X-Ray Free Electron Laser back to specs.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB), is a peer reviewed, purely electronic journal, distributed without charge to readers and funded by contributions from national laboratories. It covers the full range of accelerator science and technology: subsystem and component technologies, beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron radiation production, spallation neutron sources, medical therapy, and intense beam applications.