{"title":"基于蜻蜓算法和随机森林分类器的肾脏超声图像自动特征选择与分类框架","authors":"C. Venkata Narasimhulu","doi":"10.1049/IPR2.12179","DOIUrl":null,"url":null,"abstract":"In medical imaging, the automatic diagnosis of kidney carcinoma has become more diffi-cult because it is not easy to detect by physicians. Pre-processing is the first identification method to enhance image quality, remove noise and unwanted components from the back-drop of the kidneys image. The pre-processing method is essential and significant for the proposed algorithm. The objective of this analysis is to recognize and classify kidney dis-turbances with an ultrasound scan by providing a number of substantial content description parameters. The ultrasound pictures are prepared to protect the interest pixels before extracting the feature. A series of quantitative features were synthesized of each images, the principal component analysis was conducted for minimizing the number of features to produce set of wavelet-based multi-scale features. Dragonfly algorithm (DFA) was exe-cuted in this method. In the proposed work, the design and training of a random decision forest classifier and selected features are implemented. The classification of e-health information using ideal characteristics is used by the RF classifier. The proposed technique is activated in MATLAB/simulink work site and the experimental results show that the peak accuracy of the proposed technique is 95.6% using GWO-FFBN techniques compared to other existing techniques.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"8 1","pages":"2080-2096"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An automatic feature selection and classification framework for analyzing ultrasound kidney images using dragonfly algorithm and random forest classifier\",\"authors\":\"C. Venkata Narasimhulu\",\"doi\":\"10.1049/IPR2.12179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In medical imaging, the automatic diagnosis of kidney carcinoma has become more diffi-cult because it is not easy to detect by physicians. Pre-processing is the first identification method to enhance image quality, remove noise and unwanted components from the back-drop of the kidneys image. The pre-processing method is essential and significant for the proposed algorithm. The objective of this analysis is to recognize and classify kidney dis-turbances with an ultrasound scan by providing a number of substantial content description parameters. The ultrasound pictures are prepared to protect the interest pixels before extracting the feature. A series of quantitative features were synthesized of each images, the principal component analysis was conducted for minimizing the number of features to produce set of wavelet-based multi-scale features. Dragonfly algorithm (DFA) was exe-cuted in this method. In the proposed work, the design and training of a random decision forest classifier and selected features are implemented. The classification of e-health information using ideal characteristics is used by the RF classifier. The proposed technique is activated in MATLAB/simulink work site and the experimental results show that the peak accuracy of the proposed technique is 95.6% using GWO-FFBN techniques compared to other existing techniques.\",\"PeriodicalId\":13486,\"journal\":{\"name\":\"IET Image Process.\",\"volume\":\"8 1\",\"pages\":\"2080-2096\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/IPR2.12179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IPR2.12179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An automatic feature selection and classification framework for analyzing ultrasound kidney images using dragonfly algorithm and random forest classifier
In medical imaging, the automatic diagnosis of kidney carcinoma has become more diffi-cult because it is not easy to detect by physicians. Pre-processing is the first identification method to enhance image quality, remove noise and unwanted components from the back-drop of the kidneys image. The pre-processing method is essential and significant for the proposed algorithm. The objective of this analysis is to recognize and classify kidney dis-turbances with an ultrasound scan by providing a number of substantial content description parameters. The ultrasound pictures are prepared to protect the interest pixels before extracting the feature. A series of quantitative features were synthesized of each images, the principal component analysis was conducted for minimizing the number of features to produce set of wavelet-based multi-scale features. Dragonfly algorithm (DFA) was exe-cuted in this method. In the proposed work, the design and training of a random decision forest classifier and selected features are implemented. The classification of e-health information using ideal characteristics is used by the RF classifier. The proposed technique is activated in MATLAB/simulink work site and the experimental results show that the peak accuracy of the proposed technique is 95.6% using GWO-FFBN techniques compared to other existing techniques.