一种改进的Nesterov加速拟牛顿方法在Tensorflow上的实现

S. Indrapriyadarsini, Shahrzad Mahboubi, H. Ninomiya, H. Asai
{"title":"一种改进的Nesterov加速拟牛顿方法在Tensorflow上的实现","authors":"S. Indrapriyadarsini, Shahrzad Mahboubi, H. Ninomiya, H. Asai","doi":"10.1109/ICMLA.2018.00185","DOIUrl":null,"url":null,"abstract":"Recent studies incorporate Nesterov's accelerated gradient method for the acceleration of gradient based training. The Nesterov's Accelerated Quasi-Newton (NAQ) method has shown to drastically improve the convergence speed compared to the conventional quasi-Newton method. This paper implements NAQ for non-convex optimization on Tensorflow. Two modifications have been proposed to the original NAQ algorithm to ensure global convergence and eliminate linesearch. The performance of the proposed algorithm - mNAQ is evaluated on standard non-convex function approximation benchmark problems and microwave circuit modelling problems. The results show that the improved algorithm converges better and faster compared to first order optimizers such as AdaGrad, RMSProp, Adam, and the second order methods such as the quasi-Newton method.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"29 1","pages":"1147-1154"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Implementation of a Modified Nesterov's Accelerated Quasi-Newton Method on Tensorflow\",\"authors\":\"S. Indrapriyadarsini, Shahrzad Mahboubi, H. Ninomiya, H. Asai\",\"doi\":\"10.1109/ICMLA.2018.00185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies incorporate Nesterov's accelerated gradient method for the acceleration of gradient based training. The Nesterov's Accelerated Quasi-Newton (NAQ) method has shown to drastically improve the convergence speed compared to the conventional quasi-Newton method. This paper implements NAQ for non-convex optimization on Tensorflow. Two modifications have been proposed to the original NAQ algorithm to ensure global convergence and eliminate linesearch. The performance of the proposed algorithm - mNAQ is evaluated on standard non-convex function approximation benchmark problems and microwave circuit modelling problems. The results show that the improved algorithm converges better and faster compared to first order optimizers such as AdaGrad, RMSProp, Adam, and the second order methods such as the quasi-Newton method.\",\"PeriodicalId\":6533,\"journal\":{\"name\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"29 1\",\"pages\":\"1147-1154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2018.00185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近的研究将Nesterov的加速梯度方法用于基于梯度的加速训练。与传统的拟牛顿方法相比,Nesterov的加速拟牛顿(NAQ)方法大大提高了收敛速度。本文在Tensorflow上实现了NAQ算法的非凸优化。对原NAQ算法进行了两处改进,以保证全局收敛并消除线研究。在标准非凸函数逼近基准问题和微波电路建模问题上对该算法的性能进行了评价。结果表明,与AdaGrad、RMSProp、Adam等一阶优化器和拟牛顿法等二阶优化器相比,改进后的算法收敛速度更快、性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of a Modified Nesterov's Accelerated Quasi-Newton Method on Tensorflow
Recent studies incorporate Nesterov's accelerated gradient method for the acceleration of gradient based training. The Nesterov's Accelerated Quasi-Newton (NAQ) method has shown to drastically improve the convergence speed compared to the conventional quasi-Newton method. This paper implements NAQ for non-convex optimization on Tensorflow. Two modifications have been proposed to the original NAQ algorithm to ensure global convergence and eliminate linesearch. The performance of the proposed algorithm - mNAQ is evaluated on standard non-convex function approximation benchmark problems and microwave circuit modelling problems. The results show that the improved algorithm converges better and faster compared to first order optimizers such as AdaGrad, RMSProp, Adam, and the second order methods such as the quasi-Newton method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信