声诱发振动缓解

R. Arjunan, R. Swindell, Arindam Ghosh, D. Karczub, Nick Horder, J. A. Mann
{"title":"声诱发振动缓解","authors":"R. Arjunan, R. Swindell, Arindam Ghosh, D. Karczub, Nick Horder, J. A. Mann","doi":"10.1115/imece2022-93947","DOIUrl":null,"url":null,"abstract":"\n Reduction of the fatigue risk presented by acoustically induced vibration in flare header systems using mitigations that either reduce dynamic stress concentration effects or the level of vibration are of considerable interest to designers and plant operators. Assessments of the relative performance of different types of pipe fittings in reducing dynamic stress levels are presented based on the evaluation of data from full-scale laboratory tests of a pressure-relief system. A modal-analysis based finite-element methodology is also developed so that predictions may be extended to other piping arrangements that vary in thickness, size or connection type. The pipe fittings considered in the test are Pipet®, fabricated tee (Stub-on arrangement), sockolet (small-bore branch connections only), full-wrap reinforced fabricated Tee and Sweepolet®. For the finite-element method reducing tee connection is considered in addition. The test system produced significant levels of both turbulent-induced vibration (FIV) and acoustically induced vibration (AIV), which required differentiation of stress evaluations for the low-frequency FIV region and the mid-to-high frequency AIV region. The relative performance of mitigations (through selection of the type of pipe fitting) was found to be particularly relevant in the low-frequency FIV region. The reductions in dynamic stress and vibration of small-bore branch connections from installation of clamped bracing are also presented. The results show that the use of reducing Tees and full-wrap reinforcements for Stub-on connections for tailpipe and sub-header branch connections provide significant mitigation of dynamic stress and improvement of fatigue life over the use of Pipet® and Stub-on fittings. However, for the Sweepolet® connection which was expected to provide similar improvement the benefits are not fully realized in the 10S configuration.","PeriodicalId":23648,"journal":{"name":"Volume 1: Acoustics, Vibration, and Phononics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustically Induced Vibration Mitigation\",\"authors\":\"R. Arjunan, R. Swindell, Arindam Ghosh, D. Karczub, Nick Horder, J. A. Mann\",\"doi\":\"10.1115/imece2022-93947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Reduction of the fatigue risk presented by acoustically induced vibration in flare header systems using mitigations that either reduce dynamic stress concentration effects or the level of vibration are of considerable interest to designers and plant operators. Assessments of the relative performance of different types of pipe fittings in reducing dynamic stress levels are presented based on the evaluation of data from full-scale laboratory tests of a pressure-relief system. A modal-analysis based finite-element methodology is also developed so that predictions may be extended to other piping arrangements that vary in thickness, size or connection type. The pipe fittings considered in the test are Pipet®, fabricated tee (Stub-on arrangement), sockolet (small-bore branch connections only), full-wrap reinforced fabricated Tee and Sweepolet®. For the finite-element method reducing tee connection is considered in addition. The test system produced significant levels of both turbulent-induced vibration (FIV) and acoustically induced vibration (AIV), which required differentiation of stress evaluations for the low-frequency FIV region and the mid-to-high frequency AIV region. The relative performance of mitigations (through selection of the type of pipe fitting) was found to be particularly relevant in the low-frequency FIV region. The reductions in dynamic stress and vibration of small-bore branch connections from installation of clamped bracing are also presented. The results show that the use of reducing Tees and full-wrap reinforcements for Stub-on connections for tailpipe and sub-header branch connections provide significant mitigation of dynamic stress and improvement of fatigue life over the use of Pipet® and Stub-on fittings. However, for the Sweepolet® connection which was expected to provide similar improvement the benefits are not fully realized in the 10S configuration.\",\"PeriodicalId\":23648,\"journal\":{\"name\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-93947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-93947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过降低动态应力集中效应或振动水平的缓解措施,降低火炬集箱系统中声源振动带来的疲劳风险,是设计人员和工厂操作人员非常感兴趣的问题。基于对减压系统的全尺寸实验室测试数据的评估,对不同类型管件在降低动态应力水平方面的相对性能进行了评估。还开发了基于模态分析的有限元方法,以便将预测扩展到其他不同厚度、尺寸或连接类型的管道布置。测试中考虑的管件有Pipet®、预制三通(短柄连接)、套筒(仅限小口径分支连接)、全包强化预制三通和Sweepolet®。有限元法中还考虑了三通连接的简化。测试系统产生了显著水平的湍流诱发振动(FIV)和声诱发振动(AIV),这需要区分低频FIV区域和中高频AIV区域的应力评估。研究发现,缓解的相对性能(通过选择管件类型)与低频FIV区域特别相关。文中还介绍了安装夹紧支撑对小口径分支连接动应力和振动的降低。结果表明,与使用Pipet®和Stub-on接头相比,在排气管和副总管分支接头的Stub-on接头中使用减少三通和全包增强材料可以显著降低动应力,提高疲劳寿命。然而,对于Sweepolet®连接,期望提供类似的改进,但在10S配置中并未完全实现其优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustically Induced Vibration Mitigation
Reduction of the fatigue risk presented by acoustically induced vibration in flare header systems using mitigations that either reduce dynamic stress concentration effects or the level of vibration are of considerable interest to designers and plant operators. Assessments of the relative performance of different types of pipe fittings in reducing dynamic stress levels are presented based on the evaluation of data from full-scale laboratory tests of a pressure-relief system. A modal-analysis based finite-element methodology is also developed so that predictions may be extended to other piping arrangements that vary in thickness, size or connection type. The pipe fittings considered in the test are Pipet®, fabricated tee (Stub-on arrangement), sockolet (small-bore branch connections only), full-wrap reinforced fabricated Tee and Sweepolet®. For the finite-element method reducing tee connection is considered in addition. The test system produced significant levels of both turbulent-induced vibration (FIV) and acoustically induced vibration (AIV), which required differentiation of stress evaluations for the low-frequency FIV region and the mid-to-high frequency AIV region. The relative performance of mitigations (through selection of the type of pipe fitting) was found to be particularly relevant in the low-frequency FIV region. The reductions in dynamic stress and vibration of small-bore branch connections from installation of clamped bracing are also presented. The results show that the use of reducing Tees and full-wrap reinforcements for Stub-on connections for tailpipe and sub-header branch connections provide significant mitigation of dynamic stress and improvement of fatigue life over the use of Pipet® and Stub-on fittings. However, for the Sweepolet® connection which was expected to provide similar improvement the benefits are not fully realized in the 10S configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信