二维矩形算子的加权Hardy不等式——E. Sawyer定理的推广

V. Stepanov, E. Ushakova
{"title":"二维矩形算子的加权Hardy不等式——E. Sawyer定理的推广","authors":"V. Stepanov, E. Ushakova","doi":"10.7153/mia-2021-24-3","DOIUrl":null,"url":null,"abstract":"A characterization is obtained for those pairs of weights $v$ and $w$ on $\\mathbb{R}^2_+$, for which the two--dimensional rectangular integration operator is bounded from a weighted Lebesgue space $L^p_v(\\mathbb{R}^2_+)$ to $L^q_w(\\mathbb{R}^2_+)$ for $1<p\\not= q<\\infty$, which is an essential complement to E. Sawyer's result \\cite{Saw1} given for $1<p\\leq q<\\infty$. Besides, we declare that the E. Sawyer theorem is actual if $p=q$ only, for $p<q$ the criterion is less complicated. The case $q<p$ is new.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On weighted Hardy inequality with two-dimensional rectangular operator -- extension of the E. Sawyer theorem\",\"authors\":\"V. Stepanov, E. Ushakova\",\"doi\":\"10.7153/mia-2021-24-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A characterization is obtained for those pairs of weights $v$ and $w$ on $\\\\mathbb{R}^2_+$, for which the two--dimensional rectangular integration operator is bounded from a weighted Lebesgue space $L^p_v(\\\\mathbb{R}^2_+)$ to $L^q_w(\\\\mathbb{R}^2_+)$ for $1<p\\\\not= q<\\\\infty$, which is an essential complement to E. Sawyer's result \\\\cite{Saw1} given for $1<p\\\\leq q<\\\\infty$. Besides, we declare that the E. Sawyer theorem is actual if $p=q$ only, for $p<q$ the criterion is less complicated. The case $q<p$ is new.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/mia-2021-24-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/mia-2021-24-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

得到了$\mathbb{R}^2_+$上权重对$v$和$w$的一个刻画,对于$1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
On weighted Hardy inequality with two-dimensional rectangular operator -- extension of the E. Sawyer theorem
A characterization is obtained for those pairs of weights $v$ and $w$ on $\mathbb{R}^2_+$, for which the two--dimensional rectangular integration operator is bounded from a weighted Lebesgue space $L^p_v(\mathbb{R}^2_+)$ to $L^q_w(\mathbb{R}^2_+)$ for $1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信