{"title":"数值技术中的时间步长分布:三阶和四阶龙格-库塔算法的比较分析","authors":"C. Emeruwa, U. J. Ekah","doi":"10.9734/ajr2p/2023/v7i1130","DOIUrl":null,"url":null,"abstract":"To analyze a harmonically Van der Pol oscillator, this work used a combination of graphs, time steps distribution, adaptive time steps Runge-Kutta, and fourth order algorithms. The goal is to examine the performance of third and fourth order Runge-Kutta algorithms in finding chaotic solutions for a harmonically excited Van der Pol oscillator. Fourth-order algorithms favor larger time steps and are thus faster to execute than third-order algorithms in all circumstances studied. The accuracy of the data acquired with third order is worth the longer overall computation time steps period reported","PeriodicalId":8529,"journal":{"name":"Asian Journal of Research and Reviews in Physics","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Steps Distribution in Numerical Technique: A Comparative Analysis of Third and Fourth Order Runge-kutta Algorithms\",\"authors\":\"C. Emeruwa, U. J. Ekah\",\"doi\":\"10.9734/ajr2p/2023/v7i1130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To analyze a harmonically Van der Pol oscillator, this work used a combination of graphs, time steps distribution, adaptive time steps Runge-Kutta, and fourth order algorithms. The goal is to examine the performance of third and fourth order Runge-Kutta algorithms in finding chaotic solutions for a harmonically excited Van der Pol oscillator. Fourth-order algorithms favor larger time steps and are thus faster to execute than third-order algorithms in all circumstances studied. The accuracy of the data acquired with third order is worth the longer overall computation time steps period reported\",\"PeriodicalId\":8529,\"journal\":{\"name\":\"Asian Journal of Research and Reviews in Physics\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Research and Reviews in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ajr2p/2023/v7i1130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Research and Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajr2p/2023/v7i1130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time Steps Distribution in Numerical Technique: A Comparative Analysis of Third and Fourth Order Runge-kutta Algorithms
To analyze a harmonically Van der Pol oscillator, this work used a combination of graphs, time steps distribution, adaptive time steps Runge-Kutta, and fourth order algorithms. The goal is to examine the performance of third and fourth order Runge-Kutta algorithms in finding chaotic solutions for a harmonically excited Van der Pol oscillator. Fourth-order algorithms favor larger time steps and are thus faster to execute than third-order algorithms in all circumstances studied. The accuracy of the data acquired with third order is worth the longer overall computation time steps period reported