实时边缘分类:令牌桶约束下的最优卸载

Ayan Chakrabarti, Roch Guérin, Chenyang Lu, Jiangnan Liu
{"title":"实时边缘分类:令牌桶约束下的最优卸载","authors":"Ayan Chakrabarti, Roch Guérin, Chenyang Lu, Jiangnan Liu","doi":"10.1145/3453142.3492329","DOIUrl":null,"url":null,"abstract":"We consider an edge-computing setting where machine learning-based algorithms are used for real-time classification of inputs acquired by devices, e.g., cameras. Computational resources on the devices are constrained, and therefore only capable of running machine learning models of limited accuracy. A subset of inputs can be offloaded to the edge for processing by a more accurate but resource-intensive machine learning model. Both models process inputs with low-latency, but offloading incurs network delays. To manage these delays and meet application deadlines, a token bucket constrains transmissions from the device. We introduce a Markov Decision Process-based framework to make offload decisions under such constraints. Decisions are based on the local model's confidence and the token bucket state, with the goal of minimizing a specified error measure for the application. We extend the approach to configurations involving multiple devices connected to the same access switch to realize the benefits of a shared token bucket. We evaluate and analyze the policies derived using our framework on the standard ImageNet image classification benchmark.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"16 1","pages":"41-54"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Real-Time Edge Classification: Optimal Offloading under Token Bucket Constraints\",\"authors\":\"Ayan Chakrabarti, Roch Guérin, Chenyang Lu, Jiangnan Liu\",\"doi\":\"10.1145/3453142.3492329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an edge-computing setting where machine learning-based algorithms are used for real-time classification of inputs acquired by devices, e.g., cameras. Computational resources on the devices are constrained, and therefore only capable of running machine learning models of limited accuracy. A subset of inputs can be offloaded to the edge for processing by a more accurate but resource-intensive machine learning model. Both models process inputs with low-latency, but offloading incurs network delays. To manage these delays and meet application deadlines, a token bucket constrains transmissions from the device. We introduce a Markov Decision Process-based framework to make offload decisions under such constraints. Decisions are based on the local model's confidence and the token bucket state, with the goal of minimizing a specified error measure for the application. We extend the approach to configurations involving multiple devices connected to the same access switch to realize the benefits of a shared token bucket. We evaluate and analyze the policies derived using our framework on the standard ImageNet image classification benchmark.\",\"PeriodicalId\":6779,\"journal\":{\"name\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"16 1\",\"pages\":\"41-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453142.3492329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3492329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑一个边缘计算设置,其中基于机器学习的算法用于设备(例如相机)获取的输入的实时分类。设备上的计算资源受到限制,因此只能运行精度有限的机器学习模型。输入的子集可以卸载到边缘,由更精确但资源密集的机器学习模型进行处理。两种模型都以低延迟处理输入,但卸载会导致网络延迟。为了管理这些延迟并满足应用程序的截止日期,令牌桶限制来自设备的传输。我们引入了一个基于马尔可夫决策过程的框架来在这种约束下进行卸载决策。决策基于本地模型的置信度和令牌桶状态,其目标是最小化应用程序的指定误差度量。我们将该方法扩展到涉及连接到同一接入交换机的多个设备的配置,以实现共享令牌桶的好处。我们在标准ImageNet图像分类基准上评估和分析使用我们的框架派生的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Edge Classification: Optimal Offloading under Token Bucket Constraints
We consider an edge-computing setting where machine learning-based algorithms are used for real-time classification of inputs acquired by devices, e.g., cameras. Computational resources on the devices are constrained, and therefore only capable of running machine learning models of limited accuracy. A subset of inputs can be offloaded to the edge for processing by a more accurate but resource-intensive machine learning model. Both models process inputs with low-latency, but offloading incurs network delays. To manage these delays and meet application deadlines, a token bucket constrains transmissions from the device. We introduce a Markov Decision Process-based framework to make offload decisions under such constraints. Decisions are based on the local model's confidence and the token bucket state, with the goal of minimizing a specified error measure for the application. We extend the approach to configurations involving multiple devices connected to the same access switch to realize the benefits of a shared token bucket. We evaluate and analyze the policies derived using our framework on the standard ImageNet image classification benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信