{"title":"通过最长递增子序列发现复调音乐中扭曲的重复模式","authors":"A. Laaksonen, Kjell Lemström","doi":"10.1080/17459737.2021.1896811","DOIUrl":null,"url":null,"abstract":"We study the problem of identifying repetitions under transposition and time-warp invariances in polyphonic symbolic music. Using a novel onset-time-pair representation, we reduce the repeating pattern discovery problem to instances of the classical problem of finding the longest increasing subsequences. The resulting algorithm works in time where n is the number of notes in a musical work. We also study windowed variants of the problem where onset-time differences between notes are restricted, and show that they can also be solved in time using the algorithm.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":"82 1","pages":"99 - 111"},"PeriodicalIF":0.5000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Discovering distorted repeating patterns in polyphonic music through longest increasing subsequences\",\"authors\":\"A. Laaksonen, Kjell Lemström\",\"doi\":\"10.1080/17459737.2021.1896811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of identifying repetitions under transposition and time-warp invariances in polyphonic symbolic music. Using a novel onset-time-pair representation, we reduce the repeating pattern discovery problem to instances of the classical problem of finding the longest increasing subsequences. The resulting algorithm works in time where n is the number of notes in a musical work. We also study windowed variants of the problem where onset-time differences between notes are restricted, and show that they can also be solved in time using the algorithm.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":\"82 1\",\"pages\":\"99 - 111\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2021.1896811\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2021.1896811","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Discovering distorted repeating patterns in polyphonic music through longest increasing subsequences
We study the problem of identifying repetitions under transposition and time-warp invariances in polyphonic symbolic music. Using a novel onset-time-pair representation, we reduce the repeating pattern discovery problem to instances of the classical problem of finding the longest increasing subsequences. The resulting algorithm works in time where n is the number of notes in a musical work. We also study windowed variants of the problem where onset-time differences between notes are restricted, and show that they can also be solved in time using the algorithm.
期刊介绍:
Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.