{"title":"基于耐热性和抗脱水性的全球气候危机对肯塔基州达林顿洞甲虫的影响","authors":"A. S. Apostolopoulos, T. K. Philips","doi":"10.4311/2021lsc0132","DOIUrl":null,"url":null,"abstract":"Rising temperatures and diminishing groundwater availability due to the current climate crisis are predicted to expose cave faunas in eastern North America to unprecedented environmental conditions that could prove detrimental to their unique ecosystems. Organisms that inhabit relatively stable environments like caves are known to develop narrow physiological tolerances. Cave habitats with their organisms are simple ecosystems whose homogeneity offers an ideal system for testing the ability of a highly specialized fauna to tolerate abiotic changes. We tested the capability of a cave-specialized beetle in the eastern United States, Darlingtonea kentuckensis Valentine, to withstand future climatic shifts in its environment. We exposed individuals to a range of relative humidities and temperatures for 10 days. The data strongly suggest that there is a temperature threshold for the survival of D. kentuckensis, but it is a higher thermal tolerance than would be expected in an environment that has not fluctuated in recent evolutionary time and suggests remnant physiological characteristics of ancestral epigean carabids. Decreasing the relative humidity in the environment resulted in a much more dramatic decline in survival, indicating highly evolved specialization for constant high-humidity environments. The narrow humidity threshold in which troglobionts can survive may be a much more apparent limiting factor than temperature in adapting to climatic shifts within a cave environment.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consequences of the global climate crisis on the cave beetle Darlingtonea Kentuckensis Valentine based on thermal tolerance and dehydration resistance\",\"authors\":\"A. S. Apostolopoulos, T. K. Philips\",\"doi\":\"10.4311/2021lsc0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rising temperatures and diminishing groundwater availability due to the current climate crisis are predicted to expose cave faunas in eastern North America to unprecedented environmental conditions that could prove detrimental to their unique ecosystems. Organisms that inhabit relatively stable environments like caves are known to develop narrow physiological tolerances. Cave habitats with their organisms are simple ecosystems whose homogeneity offers an ideal system for testing the ability of a highly specialized fauna to tolerate abiotic changes. We tested the capability of a cave-specialized beetle in the eastern United States, Darlingtonea kentuckensis Valentine, to withstand future climatic shifts in its environment. We exposed individuals to a range of relative humidities and temperatures for 10 days. The data strongly suggest that there is a temperature threshold for the survival of D. kentuckensis, but it is a higher thermal tolerance than would be expected in an environment that has not fluctuated in recent evolutionary time and suggests remnant physiological characteristics of ancestral epigean carabids. Decreasing the relative humidity in the environment resulted in a much more dramatic decline in survival, indicating highly evolved specialization for constant high-humidity environments. The narrow humidity threshold in which troglobionts can survive may be a much more apparent limiting factor than temperature in adapting to climatic shifts within a cave environment.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.4311/2021lsc0132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4311/2021lsc0132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Consequences of the global climate crisis on the cave beetle Darlingtonea Kentuckensis Valentine based on thermal tolerance and dehydration resistance
Rising temperatures and diminishing groundwater availability due to the current climate crisis are predicted to expose cave faunas in eastern North America to unprecedented environmental conditions that could prove detrimental to their unique ecosystems. Organisms that inhabit relatively stable environments like caves are known to develop narrow physiological tolerances. Cave habitats with their organisms are simple ecosystems whose homogeneity offers an ideal system for testing the ability of a highly specialized fauna to tolerate abiotic changes. We tested the capability of a cave-specialized beetle in the eastern United States, Darlingtonea kentuckensis Valentine, to withstand future climatic shifts in its environment. We exposed individuals to a range of relative humidities and temperatures for 10 days. The data strongly suggest that there is a temperature threshold for the survival of D. kentuckensis, but it is a higher thermal tolerance than would be expected in an environment that has not fluctuated in recent evolutionary time and suggests remnant physiological characteristics of ancestral epigean carabids. Decreasing the relative humidity in the environment resulted in a much more dramatic decline in survival, indicating highly evolved specialization for constant high-humidity environments. The narrow humidity threshold in which troglobionts can survive may be a much more apparent limiting factor than temperature in adapting to climatic shifts within a cave environment.