{"title":"基于优化循环算法的网络安全评估模型","authors":"Xingfeng Li","doi":"10.13052/jcsm2245-1439.1255","DOIUrl":null,"url":null,"abstract":"With more and more control systems accessing computer networks, the increase in their associated vulnerabilities has led to a decreasing security evaluation of the networks. It is essential to secure computer networks from attacks. To this end, the study constructs a network of computer network security evaluation model based on an optimized circular algorithm. To avoid detecting the model’s parameters falling into the local optimum, the model is first optimized based on the Corsi grey wolf optimization (CGWO) algorithm for the hyperparameters of the Gaussian process (GP). To solve the problem of unbalanced data and the GP not having memory capability, the study proposes an optimized Gaussian Mixture Model-Recurrent neural networks (GMM-RNN) algorithm. Experimental results of attack type recognition accuracy showed that the research CGWO-GP algorithm can jump out of the local optimum, and its average value of accuracy reached 98.99%. The average value of the leakage rate was 0.42%, and the average value of the false alarm rate was 0.11%. The average detection accuracy of the GMM-RNN model for eight attack types was 95.899%. The optimal detection accuracy of this model performance was 96.3948%. The training time of the GMM-RNN model was 67.96 s, and the detection time of the test set was 6.45 s, which greatly optimized the real-time performance. The GMM-RNN model was more effective in predicting the security posture of computer networks, and the prediction value can reach 97.65%. The research model was significantly better than other algorithmic models in the performance and evaluation of computer network security and had certain research values.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"79 1","pages":"711-732"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evaluation Model for Network Security Based on an Optimized Circular Algorithm\",\"authors\":\"Xingfeng Li\",\"doi\":\"10.13052/jcsm2245-1439.1255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With more and more control systems accessing computer networks, the increase in their associated vulnerabilities has led to a decreasing security evaluation of the networks. It is essential to secure computer networks from attacks. To this end, the study constructs a network of computer network security evaluation model based on an optimized circular algorithm. To avoid detecting the model’s parameters falling into the local optimum, the model is first optimized based on the Corsi grey wolf optimization (CGWO) algorithm for the hyperparameters of the Gaussian process (GP). To solve the problem of unbalanced data and the GP not having memory capability, the study proposes an optimized Gaussian Mixture Model-Recurrent neural networks (GMM-RNN) algorithm. Experimental results of attack type recognition accuracy showed that the research CGWO-GP algorithm can jump out of the local optimum, and its average value of accuracy reached 98.99%. The average value of the leakage rate was 0.42%, and the average value of the false alarm rate was 0.11%. The average detection accuracy of the GMM-RNN model for eight attack types was 95.899%. The optimal detection accuracy of this model performance was 96.3948%. The training time of the GMM-RNN model was 67.96 s, and the detection time of the test set was 6.45 s, which greatly optimized the real-time performance. The GMM-RNN model was more effective in predicting the security posture of computer networks, and the prediction value can reach 97.65%. The research model was significantly better than other algorithmic models in the performance and evaluation of computer network security and had certain research values.\",\"PeriodicalId\":37820,\"journal\":{\"name\":\"Journal of Cyber Security and Mobility\",\"volume\":\"79 1\",\"pages\":\"711-732\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cyber Security and Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jcsm2245-1439.1255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
An Evaluation Model for Network Security Based on an Optimized Circular Algorithm
With more and more control systems accessing computer networks, the increase in their associated vulnerabilities has led to a decreasing security evaluation of the networks. It is essential to secure computer networks from attacks. To this end, the study constructs a network of computer network security evaluation model based on an optimized circular algorithm. To avoid detecting the model’s parameters falling into the local optimum, the model is first optimized based on the Corsi grey wolf optimization (CGWO) algorithm for the hyperparameters of the Gaussian process (GP). To solve the problem of unbalanced data and the GP not having memory capability, the study proposes an optimized Gaussian Mixture Model-Recurrent neural networks (GMM-RNN) algorithm. Experimental results of attack type recognition accuracy showed that the research CGWO-GP algorithm can jump out of the local optimum, and its average value of accuracy reached 98.99%. The average value of the leakage rate was 0.42%, and the average value of the false alarm rate was 0.11%. The average detection accuracy of the GMM-RNN model for eight attack types was 95.899%. The optimal detection accuracy of this model performance was 96.3948%. The training time of the GMM-RNN model was 67.96 s, and the detection time of the test set was 6.45 s, which greatly optimized the real-time performance. The GMM-RNN model was more effective in predicting the security posture of computer networks, and the prediction value can reach 97.65%. The research model was significantly better than other algorithmic models in the performance and evaluation of computer network security and had certain research values.
期刊介绍:
Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.