压电弹性材料的数学建模

Allaoua Boudjedour, Mohamed Dalah
{"title":"压电弹性材料的数学建模","authors":"Allaoua Boudjedour, Mohamed Dalah","doi":"10.1504/ijmmno.2020.10030436","DOIUrl":null,"url":null,"abstract":"We consider a quasistatic contact modelled with the regularised friction law for electro-elastic and the foundation is assumed to be electrically conductive. This regularisation is obtained by replacing the function j(.) by the function jρ(.), where ρ is a strictly positive parameter. The classical formulation for the antiplane problem is formulated as a time dependent of corresponding variational formulation and is solved by the Banach fixed-point theorem and classical results for variational inequalities. We provide a weak formulation of the contact problem in the form variational system in which the unknowns are the displacement and the stress fields, then we establish the existence of a unique weak solution to the model. Finally, we have given a convergence criterion of the solution as the parameter of regularisation ρ converges to zero.","PeriodicalId":13553,"journal":{"name":"Int. J. Math. Model. Numer. Optimisation","volume":"44 1","pages":"270-286"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modelling of piezoelectric elastic materials\",\"authors\":\"Allaoua Boudjedour, Mohamed Dalah\",\"doi\":\"10.1504/ijmmno.2020.10030436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a quasistatic contact modelled with the regularised friction law for electro-elastic and the foundation is assumed to be electrically conductive. This regularisation is obtained by replacing the function j(.) by the function jρ(.), where ρ is a strictly positive parameter. The classical formulation for the antiplane problem is formulated as a time dependent of corresponding variational formulation and is solved by the Banach fixed-point theorem and classical results for variational inequalities. We provide a weak formulation of the contact problem in the form variational system in which the unknowns are the displacement and the stress fields, then we establish the existence of a unique weak solution to the model. Finally, we have given a convergence criterion of the solution as the parameter of regularisation ρ converges to zero.\",\"PeriodicalId\":13553,\"journal\":{\"name\":\"Int. J. Math. Model. Numer. Optimisation\",\"volume\":\"44 1\",\"pages\":\"270-286\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Math. Model. Numer. Optimisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmmno.2020.10030436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Math. Model. Numer. Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmmno.2020.10030436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个准静态接触模型与正则摩擦律的电弹性,并假设基础是导电的。这种正则化是通过用函数jρ(.)代替函数j(.)得到的,其中ρ是一个严格的正参数。利用Banach不动点定理和变分不等式的经典结果,将反平面问题的经典公式表述为相应变分公式的时变函数。本文给出了以位移和应力场为未知量的变分系统接触问题的弱表达式,并证明了该模型的唯一弱解的存在性。最后,我们给出了正则化参数ρ收敛于零时解的收敛准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical modelling of piezoelectric elastic materials
We consider a quasistatic contact modelled with the regularised friction law for electro-elastic and the foundation is assumed to be electrically conductive. This regularisation is obtained by replacing the function j(.) by the function jρ(.), where ρ is a strictly positive parameter. The classical formulation for the antiplane problem is formulated as a time dependent of corresponding variational formulation and is solved by the Banach fixed-point theorem and classical results for variational inequalities. We provide a weak formulation of the contact problem in the form variational system in which the unknowns are the displacement and the stress fields, then we establish the existence of a unique weak solution to the model. Finally, we have given a convergence criterion of the solution as the parameter of regularisation ρ converges to zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信